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Abstract 

Calmodulin (CaM) activates the constitutive isoforms of mammalian NO synthase by triggering electron 

transfer from the reductase domain FMN to the heme. This enables the enzymes to be regulated by Ca
2+

 

concentration. CaM exerts most of its effects on the reductase domain, which include activation of electron 

transfer to electron acceptors and an increase in the apparent rate of flavin reduction by substrate NADPH. 

While it has been shown that the former is caused by a transition from a conformationally locked form of the 

enzyme to an open form as a result of CaM binding, improving FMN accessibility, the latter effect has not 

been explained satisfactorily. Here we report the effect of ionic strength and isotopic substitution on flavin 

reduction. We find a remarkable correlation between the rate of steady-state turnover of the reductase domain 

and the rate of flavin reduction over a range of different ionic strengths. The reduction of the enzyme by 

NADPH is biphasic, and the amplitudes of the phases determined through global analysis of stopped-flow 

data correlate with the proportion of enzyme known to exist in open and closed conformations. The different 

conformations of the enzyme molecule appear to have different rates of reaction with NADPH. Thus, 

proximity of the FMN inhibits hydride transfer to the FAD. In the CaM-free enzyme, slow conformational 

motion (opening and closing) limits turnover. It is now clear that this motion also controls hydride transfer 

during steady-state turnover, by limiting the rate at which NADPH can access the FAD. 

 

Introduction 

In mammals, the production of nitric oxide has been linked to a range of cell signaling events and 

physiological processes 
[1, 2]

. The nitric oxide synthases (NOS) 
[3, 4, 5]

 responsible have evolved a series of post-

translational regulation mechanisms based on the control of the enzymes’ catalytic activity. A molecular-level 

understanding of these is now developing. 

NOS is a dimeric enzyme composed of an oxygenase domain, which is the site for NO synthesis, and a 

reductase domain, which is related by sequence and structure to cytochrome P450 reductase (CPR). X-ray 

crystal structures of both the isolated domains have been determined along with CaM-bound FMN domain 
[6-

9]
, but as yet it is unclear how the holoenzyme is assembled. NO synthesis from L-arginine follows a unique 

mechanism involving consecutive mono-oxygenation reactions, leading to the formation of citrulline via the 

intermediate N-hydroxy-arginine 
[3, 10]

. 

The oxygenase and reductase domains are connected by a 20 amino-acid linker containing a calmodulin 

(CaM) binding motif. In the constitutive NOS isoforms (neuronal and endothelial), elevated levels of free Ca
2+

 

cause CaM to bind and activate electron transfer from the reductase domain to the heme of the oxygenase 

domain 
[11]

. This is a primary mechanism of enzyme regulation, enabling NO synthesis activity to be increased 
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from a negligible level. However, activity can also be modulated up or down by kinase-dependent 

phosphorylation of the reductase domain and association with inhibitor proteins 
[12]

. 

The reductase domain of NOS is itself composed of two domains, one of which binds NADPH and FAD, and 

the other FMN 
[13]

. The FAD domain is related to the ferredoxin reductase family of enzymes and catalyses 

NADPH dehydrogenation 
[14]

. It passes the two electron equivalents one at a time to the FMN domain, which 

is related to the flavodoxin family of electron carriers 
[15]

. Typical of these, the FMN oscillates between a 

stable one-electron reduced neutral semiquinone form and a two-electron reduced hydroquinone form, 

shuttling single electrons between the FAD and the heme 
[16, 20]

. For the constitutive enzyme forms, at low 

Ca
2+

 concentrations or in the absence of CaM, the enzymes enter a catalytically repressed state. This is 

characterized by the rate of NO synthesis falling to zero, the rate of steady-state cytochrome c reduction 

decreasing by 10-fold, the sensitivity of the enzyme to oxygen decreasing and the rate of reduction by 

NADPH decreasing 
[17]

. These effects are also manifested in the isolated reductase domain (which retains the 

CaM binding site at the N-terminus) and are similarly relieved by CaM binding 
[18]

. A series of unusual 

protein inserts mediate the effects of CaM binding and appear to stabilize the repressed form of the reductase 

domain. These include an approximately 40 amino-acid insert in the FMN domain (the autoinhibitory loop) 
[19, 

20]
, a 30 amino-acid extension to the C-terminus 

[21, 22]
, an insert in the hinge between the FMN and FAD 

domains 
[23]

, a protruding section of the FAD domain 
[24]

 and the CaM-binding site itself. Repression of 

cytochrome c reduction is also induced by NADPH binding 
[25]

. Many of these elements form an extended 

contact area between the FAD and FMN domains, as compared to CPR 
[26]

, and may serve to stabilize the 

conformation of the protein reported in the respective X-ray crystal structures 
[27]

. Both have the cofactors in 

close proximity, apparently in an ideal position for FAD to FMN electron transfer. In both structures NADP
+
 

is bound in a passive conformation and substantial rearrangement is anticipated before either hydride transfer 

from NADPH to FAD or electron transfer from FMN to acceptor could take place. A recent structure of a 

mutant CPR shows the enzyme in an open conformation indicating the degree of motion possible 
[28]

. It is 

likely that the conformational changes required during catalytic turnover of both enzymes have been restricted 

in NOS causing repression in the absence of CaM. Beyond this, our understanding of the CaM-dependent 

activation mechanism is limited by the absence of an available structure of the CaM-bound enzyme, although 

a structure of the CaM-bound FMN domain has recently been reported 
[8]

, and by the lack of a coherent model 

to explain the many reported effects of CaM binding on the enzyme. 

One of the least well understood effects of CaM on nNOS reductase domain (nNOSrd) is the increase in the 

rate of flavin reduction observed on direct reaction of the enzyme with NADPH. This should be a simple 

process largely involving hydride transfer from NADPH to FAD. However, previous studies show multiple 

reduction phases with intermediate states that are difficult to assign to distinct species. Thus, it is unclear 

whether CaM activates the hydride transfer event itself, formation of a precursor complex, product 

dissociation, electron transfer or a rebalances series of equilibria. Here we investigate the influence of ionic 
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strength and isotopic substitution on this reaction in order to elucidate which steps are activated by CaM and 

whether reduction of the FAD is rate-determining in the catalytic action of the reductase domain. 

 

Results and discussion 

Steady state turnover: The surrogate electron acceptors, cytochrome c and ferricyanide, are known to short-

circuit the turnover of nNOS by accepting electrons from the reductase domain of the enzyme before they can 

be transferred to the oxygenase domain 
[17]

. The isolated reductase domain (nNOSrd) has similar rates of 

turnover to the full-length enzyme and is activated by CaM binding to the same extent 
[18]

. Cytochrome c 

accepts electrons exclusively from the FMN of nNOS, whereas ferricyanide can access the FAD also, 

although not as readily 
[16]

. The cytochrome c dependence of nNOSrd therefore follows Michaelis Menten 

kinetics, with the kcat increased by 10-fold on CaM binding (Table 1). Data for the ferricyanide dependence of 

nNOSrd are shown in Supplementary Fig S1. These show that the rate of turnover increases linearly with the 

concentration of ferricyanide over the range shown, intercepting the y-axis. It is logical to assume that the 

intercept corresponds to the rate of electron transfer from the FMN, whereas the electron transfer from FAD to 

ferricyanide causes the linear increase [20]. This has been confirmed by studies on the isolated domains and 

FMN-deficient nNOS 
[20, 34]

. Furthermore, the intercept values, with and without bound CaM, correspond 

approximately to the rates of steady-state cytochrome c reduction. From the ferricyanide data, it appears that 

the rate of hydride transfer from NADPH to FAD is fast enough to support ferricyanide reduction at rates in 

excess of 100 s
-1 

regardless of whether or not CaM is bound. This suggests that electron transfer from FAD to 

FMN is slow and limits the turnover of nNOS with cytochrome c. It is logical to suppose that this step is the 

event activated by CaM 
[35, 42]

. However, this is not the whole story, in the presence of a large excess of 

ferricyanide it is likely that the stable FMN semiquinone is oxidized. This seemingly innocuous change in 

redox state has a profound effect on the behaviour of the enzyme, as demonstrated by the pre-steady-state data 

(below). 

 

Buffer Ca
2+

/CaM kcat Km (cytc) DV D(V/K) 

100mM NaCl - 10.4 ± 0.4 3 ± 1 1.9 1.1 

 + 104 ± 6 8 ± 2 1.6 1.4 

150 mM NaCl - 15 ± 1 8 ± 2   

 + 105 ± 3 10 ± 2   

250 mM NaCl - 23 ± 1 12 ± 2   

 + 95 ± 6 12 ± 3   

Parameters were derived by fitting initial rate data to the Michaelis Menten Equation by non-linear regression 

analysis. Kinetic isotope effects DV and DV/K were determined as described in the text. 

Table 1. Kinetic parameters for the steady-state reduction of cytochrome c by nNOSrd in the presence or 

absence of bound CaM, with different salt concentrations. 
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Pre-steady-state flavin reduction: Reduction of nNOSrd by NADPH has been the subject of several previous 

studies, many of which reach different conclusions 
[25, 31, 35, 36]

. It has proved difficult to reconcile the rate-

constants and amplitudes observed with steady-state observations, to such an extent that it is unclear which 

steps are rate-determining in the steady-state reactions and which are activated by CaM. Fig. 1 shows the 

reduction of nNOSrd by an excess of NADPH on rapid mixing in the absence and presence of bound CaM. 

Two enzyme forms are compared here, fully oxidized (by addition and subsequent removal of ferricyanide) 

and one-electron reduced (titrated with dithionite until the FMN semiquinone is fully formed) both prepared 

anaerobically. Both have been studied previously in isolation, but have not been previously been compared. 

The oxidized form is not a natural component of the catalytic cycle of NOS, which utilizes only the FMN 

semiquinone/hydroquinone redox couple to pass electrons to the heme, but may be formed in the steady-state 

reaction with ferricyanide (above). The one-electron reduced form is a natural component of both the NO 

synthesis and cytochrome c reduction catalytic cycles; the FMN semiquinone cannot be oxidized by either of 

the ferric heme species involved in these reactions. The most obvious thing to note from Fig. 1 is that CaM 

appears to have a much greater effect on the one-electron reduced form of the enzyme. Essentially, the CaM-

free one-electron reduced form is reduced more slowly by NADPH than the fully oxidized version. 

Unfortunately the reduction kinetics of the fully oxidized version are highly complicated and difficult to 

interpret. This form of the enzyme reacts sequentially with 2 equivalents of NADPH and has many possible 

intermediates (see Scheme 1 and 
[31]

). However, it is clear that the CaM-free oxidized form reacts more 

quickly with NADPH, and this is likely to influence the behaviour of the enzyme during steady-state turnover 

with ferricyanide (see above). The one-electron reduced form is the catalytically relevant form and its kinetics 

should be easier to interpret, this will therefore be our focus. 

 

Figure 1. Stopped-flow reduction of nNOSrd by excess NADPH. A, diode array spectra showing reduction of 

the 1-electron reduced enzyme in the absence of CaM and, inset in the presence of bound CaM; C, the 
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corresponding normalized reaction timecourses measured at 456 nm. B, diode array spectra showing reduction 

of the fully oxidized enzyme in the absence of CaM and, inset in the presence of bound CaM; D, the 

corresponding normalized reaction timecourses measured at 456 nm. 

 

Scheme 1. Sequential reduction of the one-electron reduced form of nNOSrd by excess NADPH. 

 

According to Scheme 1, the one-electron reduced enzyme should primarily react with a single equivalent of 

NADPH before undergoing slower inter-molecular electron transfer reactions. Thus, the absorbance change at 

456 nm should involve a single hydride-transfer phase constituting the majority of the amplitude, during 

which the FAD is reduced to the hydroquinone form. Transfer of an electron to the FMN should have minimal 

effect on the absorbance. Fig. 1A and C show the nNOSrd spectra and timecourses respectively during 

reduction. However, as reported previously, the timecourses in the presence and absence of CaM are not 

monophasic single step reactions and were both fitted to double exponential functions (Table 2). For the CaM-

bound enzyme, as expected, reduction occurs with a large fast phase constituting 80% of the absorbance 

change, whereas the CaM-free enzyme is reduced with a small fast phase constituting 20% of the absorbance 

change and a large slow phase with rate constant 6.5 s
-1

. This has proved difficult to interpret. The various 

possibilities for the biphasic nature of this reaction include the presence of a metastable intermediate state, 

such as a charge-transfer complex, slow product dissociation, heterogeneity within the enzyme sample or 

conformational heterogeneity with slow interconversion between states. Global analysis of the reaction (Fig 2 

and Fig 3C) enables the spectrum of the intermediate state to be calculated. It is essentially identical to the 

starting spectrum, but with a lower band at 457 nm. The transition from here to the final species occurs via an 

identical spectral change. Formation of charge-transfer complexes between NADPH and FAD were not 

observed to any great extent indicating that stacking between NADPH and FAD is transient under these 



Page 6 of 20 

conditions. For comparison, figures showing the reduction of the isolated FAD domain by NADPH are in the 

supplementary material (Supplementary Fig S2). These show clear formation of a [FADH
-
/NADP

+
] charge 

transfer complex after a very rapid reaction. An equivalent long-wavelength band is not evident in Figs 1 or 3. 

Experiments performed in the presence of NADP
+
 do not show strong inhibition, indicating that product 

release is not slow. That leaves some form of heterogeneity within the sample. Apparently, 20% of the 

enzyme molecules react with NADPH at a faster rate than the remainder. The slow phase is close to the 

steady-state catalytic rate constant for cytochrome c reduction per electron transferred and is a candidate for 

limiting the overall rate. However, the reason for the apparent heterogeneity in the reaction of NADPH with 

CaM-free nNOSrd must be addressed, before this can be assigned. No evidence of heterogeneity could be 

found in the samples of nNOSrd purified, but it is possible for proteolytic truncation of a short section of the 

C-terminus to cause an increase in the activity of the CaM-free enzyme and be difficult to detect 
[21]

. This 

question can be resolved by looking at the effect of ionic strength on the reaction. 

 

Enzyme substrate Ca
2+

/CaM k1 (s
-1

) 

(Amplitude) 

k2 (s
-1

) 

(Amplitude) 

1-electron reduced nNOSrd NADPH - 35 ± 1 

(20%) 

6.5 ± 0.1 

(80%) 

 NADPH + 93 ± 2 

(80%) 

5.1 ± 0.1 

(20%) 

 NADPD - 24 ± 1 

(30%) 

4.3 ± 0.1 

(70%) 

 NADPD + 60 ± 1 

(80%) 

4.0 ± 0.1 

(20%) 
a
Rate constants k1 and k2 (s

-1
) were derived in each case by fitting to a double exponential function with the 

percentage amplitude for each phase given. 
b
For the ionic strength data. 

Table 2. Kinetic parameters for the stopped-flow reduction of nNOSrd by excess NADPH or NADPD in the 

presence or absence of bound CaM. 

 

← Figure 2. Stopped-flow reduction of 

nNOSrd by excess NADPH, dependence on 

ionic strength. Normalised reaction 

timecourses measured at 455 nm in the 

absence of CaM, in the presence of 

increasing concentrations of NaCl. Fit lines 

determined by global analysis of data using a 

consecutive 2-step kinetic model, fit 

parameters are presented in Table 2, 

simulated spectra are presented in Fig. 4. 
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Figure 3. Calculated spectra resulting from global analysis of the pre-steady-state reduction of wt nNOSrd (1-

electron reduced) by excess NADPH under different ionic strength conditions. Conditions used were as in Fig. 

3 with 100mM KCl, 150 mM KCl and 250 mM KCl for Panels A, B and C. In each case the three spectra 

represent the three species observed in a consecutive 2-step reaction (i.e. A to B to C) Kinetic fit parameters 

are listed in Table 2.  

 

Ionic Strength Effects: Modulating the ionic strength of the buffer has previously been shown to affect the 

steady-state rate of cytochrome c reduction by nNOS 
[37]

, with higher ionic strength correlating with a 

decrease in affinity for the electron acceptor. Under our conditions (Table 1), the results show a significant 

effect on the CaM-free enzyme, with 2-fold faster turnover in the presence of 250 mM NaCl and a lesser 

effect on the CaM-bound enzyme. Thus, there is a decrease in the CaM-dependence of the enzyme at higher 

ionic strength. This result suggests that the rate-determining step for steady-state cytochrome c reduction in 

the absence of CaM is ionic-strength dependent. More comprehensive earlier studies of the effect of different 

salts and protein denaturing agents on the steady-state activity of NOS by Nishimura and Narayanasami et al., 

[38, 39]
 also show this effect. In fact it was shown that the effect of CaM on cytochrome c reduction can be 

completely eliminated in the presence of guanidinium thiocyanate, with the CaM-free activity being elevated 

to that of CaM bound. Although at the extreme, catalytic turnover was not sustained for long. These studies 

are consistent with the idea that interactions between the FAD and FMN domain inhibit catalytic cytochrome 

c reduction, and that its disruption through addition of denaturing agents produces a similar effect to CaM-

binding 

The pre-steady-state reduction of CaM-free nNOSrd by excess NADPH was also found to be ionic-strength 

dependent (Fig. 2), with faster reduction occurring at higher ionic strength. Again, the traces collected for the 

one-electron reduced enzyme were found to be biphasic, with faster slow phases with greater ionic strength 

(Table 3), and with different amplitudes for the fast and slow phases. The proportion of fast phase increases 

from 36 % to 53 % on inclusion of 0.25M NaCl in the buffer. The global analysis data indicate that similar 
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spectral changes occur at each different ionic strength. This indicates that the heterogeneity observed during 

reduction of CaM-free nNOSrd by NADPH is ionic strength dependent. It cannot therefore be caused by 

partial degradation or re-oxidation of the sample. The most likely cause is conformational heterogeneity; 

different conformations of the same protein co-existing in solution, with a slow inter-conversion rate. One 

form of the protein is highly susceptible to reduction by NADPH, the other either reacts slowly or is 

unreactive and must undergo a slow conformational rearrangement to convert to the active form. The 

equilibrium balance between the two forms is dependent on the ionic strength of the buffer. The slow 

reduction phase is also faster at higher ionic strength, indicating that the conversion rate is ionic strength 

dependent as well as the equilibrium position. The accessibility of the FMN to cytochrome c in reduced 

nNOSrd, as estimated from pre-steady-state experiments is around 40 % in the absence of CaM and NADPH 

compared to that in the presence of both 
[25]

. A similar distribution of open/closed conformers in the one-

electron reduced enzyme is likely to lead to the 36%: 64% distribution of amplitudes observed in the pre-

steady-state reduction by NADPH at low ionic strength. A further important observation is that the rate 

constants for the slow phases are close to the rates of steady-state turnover at the corresponding ionic strength. 

Thus the rate of reduction of FAD by NADPH appears to limit the rate of cytochrome c reduction, but is itself 

limited by the rate of conformational motion. 

 

Enzyme [NaCl] Ca
2+

/CaM k1 (s
-1

) 

(Amplitude) 

k2 (s
-1

) 

(Amplitude) 

1-electron reduced nNOSrd 

 

100 mM - 48 ± 1 

(36%) 

5.6 ± 0.1 

(64%) 

 150 mM - 41 ± 1 

(41%) 

6.5 ± 0.1 

(59%) 

 250 mM - 44 ± 1 

(53%) 

9.1 ± 0.1 

(47%) 

Table 3. Kinetic parameters for the stopped-flow reduction of nNOSrd by excess NADPH in the presence of 

different concentrations of NaCl. Rate constants were derived using global analysis to fit to a biphasic kinetic 

model. In this case amplitudes refer to absorbance changes at 455 nm. 

 

The effect of increasing the salt concentration on the pre-steady state reduction kinetics of CaM-free nNOSrd 

is similar to the effect of binding CaM. It is possible, therefore, that the active conformational form of CaM-

free nNOSrd is related to the CaM-bound form and that CaM-binding acts on a similar conformational 

equilibrium. This model is shown in Fig. 4, with the conformational change being represented by opening and 

closing of the hinge connecting the FAD and FMN domains of nNOSrd, to form hinged “open” and “closed” 

conformations. If the hinged open form only is able to undergo rapid NADPH to FAD hydride transfer, then 

the pre-steady-state reduction kinetics would be biphasic, with the amplitudes of the two phases corresponding 

to the position of the conformational equilibrium, provided that the hinge-opening process A is also slow. It 



Page 9 of 20 

has also been established through mutation studies that the FAD:FMN domain interface is a strong 

determinant of the activity of the enzyme and particularly its CaM-dependence. Mutations to the interface 

usually affect steady-state turnover, FMN accessibility to cytochrome c and flavin reduction kinetics similarly 

and simultaneously 
[40, 45-47]

. However, we do not yet have data on a fully locked (hinged closed) form of the 

enzyme to determine whether or not hydride transfer occurs in this conformation. Thus information relating to 

step C in the model is currently lacking. 

 

Figure 4. Proposed model for the action of nNOSrd. Calmodulin alters the position of equilibrium between 

the open and closed conformations of nNOSrd (A). NADPH rapidly forms a charge transfer (CT) complex 

with the FAD in the open form (B), but not in the closed form (C). 

 

Fluorescence Spectroscopy: Fluorescence emission spectra of 2 M nNOSrd collected in 50 mM Tris/HCl 

buffer pH7.5 with variable amounts of KCl are shown in Fig. 5. Addition of salt to the enzyme sample caused 

the fluorescence intensity to increase by 50%. A larger increase is observed on addition of Ca and CaM, but 

the effect is similar 
[18]

. These results are consistent with the theory that higher ionic strength induces a more 

open enzyme conformation in which the flavin is more fluorescent, in a similar manner to the structural 

change induced by CaM binding. It should be noted that the enzyme used in this study had been oxidized by 
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addition of ferricyanide prior to the experiment and is therefore different to that used in the other studies, in 

which the stable FMN semiquinone is retained. 

 

 

Figure 5. Fluorescence emission spectra of nNOSrd with excitation at 450 nm, recorded in 50 mM Tris HCl 

pH 7.5 and with addition of 0.1 M, 0.22 M and 0.5 M KCl.  

 

Kinetic Isotope Effects: It has been shown that the A-side hydrogen atom of NADPH is exclusively 

transferred as a hydride to the FAD of the family of enzymes to which NOS belongs 
[41]

. Substitution of this 

hydrogen by deuterium to form NADP
2
H (NADPD) enables kinetic isotope effects to be determined for 

reactions involving the transfer of this hydride. Table 1 shows the steady-state kinetic isotope effects for 

nNOSrd. The isotope effects determined for V/K (i.e. the second-order rate-constant for reaction of NADPH 

with enzyme under steady-state conditions) were low, at 1.1 and 1.4 in the presence and absence of CaM 

respectively. This indicates that the rate of hydride transfer from NADPH to FAD is slowed slightly when the 

hydride is replaced by deuteride, due to the larger mass of deuterium. Kinetic isotope effects on hydride 

transfer can be as high as 8, or beyond if quantum-mechanical tunneling effects are important. Therefore, it is 

unlikely in this case that the hydride transfer step itself is entirely rate-determining. The results are consistent 

with those of Wolthers and Schimerlik 
[41]

 who draw similar conclusions.  

The pre-steady-state flavin reduction experiments enable the hydride transfer step to be observed more 

directly, by mixing NADPD with oxidized or one-electron reduced enzyme. Traces collected in the presence 

and absence of CaM are shown in Fig. 6, in comparison to equivalent NADPH reduction traces. It is apparent 

that isotopic substitution affects the rate of FAD reduction through slowing the rate of hydride transfer. The 
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traces were analyzed by fitting to double exponential functions as described above, and parameters listed in 

Table 2. Reduction of nNOSrd by NADPD proceeded in a similar way to the reaction with NADPH, resulting 

in similar spectral changes and similar amplitudes for fast and slow phases. However, the rate-constants for 

the fast and slow phases were lower in each case. Comparison of individual values for NADPD versus 

NADPH under similar conditions provides a kinetic isotope effect for that particular reaction. For the one-

electron reduced enzyme, isotope effects on the fast and slow phases (k1 and k2) were approximately 1.5 for 

both, in the presence and absence of CaM. Those for the fully oxidized enzyme were slightly larger, and 

consistent with those of Knight and Scrutton 
[31]

, who reached similar conclusions. The lack of a CaM effect 

on the kinetic isotope effect indicates that the transition state for hydride transfer is similar in both cases. In 

other words, CaM does not increase the rate of FAD reduction by altering the affinity of FAD for the hydride, 

or the orientation of nicotinamide stacking above the FAD. The logical conclusion is that CaM increases the 

rate at which NADPH can adopt the appropriate orientation for hydride transfer, i.e., the rate of 

conformational change. In this case the conformational change is the displacement of the FAD stacking 

residue, F1395, the motion of which is likely to be linked to the overall enzyme conformation. 

 

 

Figure 6. Stopped-flow reduction of nNOSrd by excess NADPH or NADPD. Normalised reaction 

timecourses measured at 456 nm in the presence (a, b) or absence (c, d) of bound CaM, for reaction with 

NADPH (a, c) or NADPD (b, d). 

 

How does the enzyme conformation control the rate of flavin reduction?: The only structure of nNOSrd 

available 
[7] 

appears to show the enzyme in a hinged-closed conformation with the FMN 5 Å from the FAD 

and inaccessible to electron acceptors. Therefore, this is a useful structure on which to base mechanistic 
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hypotheses. In comparison to the structure of CPR 
[26]

, nNOSrd has an extended interface between the FAD 

and FMN domains, brought about by the “autoinhibitory loop” in the FMN domain and the C-terminal 

extension to the FAD domain. Unfortunately both of these features are only partially resolved in the X-ray 

structure and it is difficult to speculate on their interactions beyond this. Presumably the extra contact area 

stabilizes the closed conformation and inhibits hinge-opening. The two antoinhibitory modules may also help 

to direct the path of the FMN domain as it moves to contact the oxygenase domain in the CaM-bound state. 

Interestingly, the C-terminal extension (CTX) to nNOSrd begins where a series of catalytically important 

amino-acid residues lie close to the FAD. The most obvious of these is F1395, which stacks with the FAD 

isoalloxazine ring. It has been well documented that this residue must move considerably during catalysis in 

order for the NADPH nicotinamide substituent to transfer a hydride to the FAD (in NOS and related enzymes 

such as ferredoxin reductase and CPR) 
[7, 14, 26, 30, 34, 43, 44]

. It has been proposed therefore that motion of F1395 

is dependent on the position/motion of the C-terminal extension 
[43, 44]

. One function of F1395 is to destabilize 

the stacking interaction between nicotinamide and FAD, enabling NADP+ to dissociate from the charge 

transfer complex 
[44]

. During catalysis, its rate of movement away from the FAD is likely to control the rate of 

formation of this charge transfer complex and therefore of hydride transfer. Thus, there is a direct link 

between the hydride transfer step and position of the CTX. The CTX extends across the surface of the FMN 

domain, its orientation, movement and perhaps also its structure are likely to be dependent on the enzyme 

conformation. Even partial truncation of the CTX removes its inhibitory properties 
[50]

. It is also interesting 

that nNOSrd enters a “conformationally locked” state in the reduced state with NADPH bound, in which the 

FMN is shielded from external electron acceptors presumably through being buried in the domain-domain 

interface. The FAD hydroquinone and NADPH are unlikely to be able to form a stable charge-transfer 

complex and may be unable to stack together. With no driving-force for dislocation of the F1395 residue, both 

it and the CTX may be locked in place restricting motion of the FMN domain. With the FAD in the oxidized 

state awaiting hydride transfer, the FMN domain appears to be inhibitory 
[16]

. Its proximity to the FAD may 

stabilize the position of the CTX and inhibit movement of F1395. Consequently, destabilisation of the 

domain-domain interface through mutagenesis of the CTX, autoinhibitory loop, or individual amino acids 

inevitably leads to activation of the CaM free enzyme with respect to flavin reduction and electron transfer to 

external acceptors 
[12, 16, 20-24, 27, 36, 40, 43, 44, 46]

. 

The unique autoinhibition mechanism found in the constitutive NO synthases is likely to have evolved to 

prevent electron transfer to the heme in the absence of CaM and to limit the futile consumption of NADPH by 

the reductase domain in the presence of oxygen, also preventing superoxide generation 
[50]

. The inhibition of 

flavin reduction is unlikely to have been an evolutionary priority, but is a consequence of restricting the 

motion of the FMN domain by extension of the C-terminus. The full importance of domain-domain motion in 

the catalytic action of this enzyme remains to be seen. 
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Conclusions 

Through the work of many groups it has been established that both NO synthase reductase domain and CPR 

undergo large-scale conformational movement during catalysis 
[3, 7, 12, 25, 26, 27, 36, 40, 44, 46-49]

. Evidence also 

indicates that this motion, the transition between open and closed enzyme forms, limits the rate of enzyme 

turnover under some conditions. For nNOSrd, it has been proposed that electron transfer from the FMN to 

electron acceptors is inhibited by these slow conformational changes, limiting the overall rate of turnover 
[46-

48]
. In this paper we show that reduction of the FAD by NADPH in nNOSrd is equally affected by the 

conformation of the enzyme. This is most apparent in the ionic strength studies where both the proportion of 

enzyme in the most active form and the rate of transition to this form appear to be increased by adding salt. 

The steady-state rate constants and the amplitudes and rate constants of the slow phases observed in the pre-

steady-state show that this is the case and are consistent with each other. Both sets of data point to the active 

form of the enzyme being in an open conformation and support the role of electrostatic attraction in stabilizing 

the FAD-FMN domain-domain interface 
[46]

.  

The control of individual kinetic steps by the sampling of different enzyme conformations is a feature of this 

family of enzymes. In the CaM-free form of nNOSrd, motion appears to be slowed down enough to limit the 

rate of enzyme turnover. However, it is likely that the same mechanical motion is required in the other 

members of the family, although it can occur at much greater speeds. 

 

Experimental procedures 

Materials: All reagents were supplied by Sigma-Aldrich Ltd unless stated otherwise. 

Preparation of nNOSrd and Calmodulin: The reductase domain of nNOS (nNOSrd) was expressed in E. coli 

BL21(DE3) cells using plasmid pCRNNR 
[29]

, and purified on 2’,5-ADP-agarose (1 x 20 cm) and CaM-

agarose (1 x 10 cm) as previously described 
[25]

. Protease Inhibitor Cocktail (Sigma-Aldrich) was additionally 

used at the cell lysis stage and all buffers were degassed prior to use, to ensure that the bound FMN retained 

its semiquinone form. Enzyme concentration was determined by UV-visible spectrometry (Cary 50) with an 

extinction coefficient of 20940 M
-1

cm
-1

 
[30]

. Bovine brain CaM, co-expressed with nNOSrd, was purified using 

the previously established protocol 
[25]

. 

Preparation of NADPD: Deuterated A-side NADPH (NADPD) was prepared enzymatically using alcohol 

dehydrogenase from T. brockii 
[31, 32]

, using a preparation in Tris-HCl pH 9 containing 2mM NADP
+
 and 1 M 

ethanol-d6. Incubation took place at 42
o
C for 45 minutes and was monitored by the appearance of a UV-Vis 

absorption peak at 340 nm. The alcohol dehydrogenase was removed by centrifugation and the resulting 

mixture of NADP
+
 and NADPD was purified using a 1 ml Q-sepharose resource-Q column on an FPLC 

system (Akta). Binding of the nucleotides took place in 10 mM NH4HCO3 and elution was achieved using a 
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50 ml gradient of 500 mM NH4HCO3. Collected fractions were assessed for purity by comparison of the UV-

Vis spectra, with peaks at 260 nm (non-deuterated) and 340 nm (deuterated). Fractions with a ratio of 260:340 

less than 3 were pooled together and lyophilised. 

Steady-state turnover: The activity of nNOSrd was characterised by the reduction of electron acceptors 

cytochrome c (from Horse Heart) and potassium ferricyanide (FSA Lab supplies) using a Cary 50 UV/Vis or 

Shimadzu UV-1601 spectrophotometer. Assays were carried out at 25
o
C and initiated by the addition of 

enzyme (10-40nm), NADPH (1mM) and either EGTA (1mM) or Ca
2+

/CaM (1mM/100M). All experiments 

were performed in 50mM Tris-HCl, pH 7.5, with the addition of 100mM, 150mM or 250mM NaCl. 

Turnover experiments with NADPD were carried out using a stopped-flow (Applied Photophysics SX.18MV) 

mixing method, where a catalytic amount of enzyme (0.1 M) was pre-incubated with NADPH or NADPD 

(2-10 M) and reacted with an excess (100 M) of ferric cytochrome c. The resultant traces were analysed 

(Origin 7.5, Microcal) to give kcat and Km values according to the method of Gibson 
[33]

. 

Pre-steady-state flavin reduction: Pre steady-state reduction of the bound flavins of nNOSrd was carried out 

by stopped-flow mixing at 25
o
C of 10M enzyme with 100M NADPH or NADPD, in the presence or 

absence of Ca
2+

/CaM. The normal buffer used was 50mM Tris-HCl, pH 7.5 plus 100mM NaCl, with the 

addition of extra salt in the ionic strength experiments, up to 150mM or 250mM. The change in absorbance at 

457nm was monitored and full spectra were recorded using a diode-array detector at 2.5ms intervals. The 

enzyme was either one-electron reduced by titration against dithionite in an anaerobic glove box (Belle 

Technology), or fully oxidised by addition of excess potassium ferricyanide followed by removal on size 

exclusion chromatography (Sephadex G-25). Data were analysed by fitting the decay in absorbance at 457 nm 

to double exponential functions using Origin 7.0 (Microcal). For the salt-dependent studies diode array 

datasets were analysed using Applied Photophysics proprietary ProK global analysis software by fitting to a 2-

step sequential kinetic model (A to B to C). 

Fluorescence Spectroscopy: Fluorescence emission spectra of 2 M nNOSrd were collected in 50 mM 

Tris/HCl buffer pH7.5 using a Shimadzu RF5301 spectrofluorimeter at an excitation wavelength of 450 nm. 

In order to increase the salt concentration of the samples, the required amount of solid KCl was added to a 3 

ml enzyme sample and dissolved. Spectra were recorded after stabilization of the signal (approximately 10 

min). This method ensures direct comparability between measurements. The salt did not affect the stability of 

the protein. 
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