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Abstract

We present a maximum entropy-based system for identifying named entities (NEs) in
biomedical abstracts and present its performance in the only two biomedical named
entity recognition (NER) comparative evaluations that have been held to date, namely
BioCreative and Coling BioNLP. Our system obtained an exact match F-score of
83.2% in the BioCreative evaluation and 70.1% in the BioNLP evaluation. We discuss
our system in detail, including its rich use of local features, attention to correct
boundary identification, innovative use of external knowledge resources, including
parsing and web searches, and rapid adaptation to new NE sets. We also discuss
in depth problems with data annotation in the evaluations which caused the final
performance to be lower than optimal. Copyright © 2005 John Wiley & Sons, Ltd.
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Introduction

The explosion of information in the biomedi-
cal domain has led to immense interest in auto-
mated information extraction techniques and con-
sequently to a number of publications describing
systems and results for natural language process-
ing tasks on biomedical data. With each group
addressing varying tasks, using varying evalua-
tion corpora, and employing varying scoring meth-
ods, it has been impossible to properly compare
systems and assess the state of progress in the
field. The use of standardized evaluations to rem-
edy this state of affairs is only beginning; the
Text Retrieval Conference only recently initiated
a genomics track to assess biomedical information
retrieval and question-answering. Here we focus
on the task of Named Entity Recognition (NER),
which requires identification of names in shal-
low semantic categories, such as protein names or

Copyright © 2005 John Wiley & Sons, Ltd.

drug names. A number of groups have reported
results on biomedical NER, attempting to identify
anywhere between four and 24 categories, evalu-
ating on corpora ranging from 30 to 100 abstracts
and reporting scores varying from 3% for the class
‘RNA’ to 92% for the specific protein ‘SH3’ (Col-
lier et al., 2000; Fukuda, 1998; Kazama et al.,
2002; Nobata et al., 1999). Recently, two compar-
ative evaluations have been held to evaluate the
state of progress in the field: BioCreative (Blaschke
et al., 2004) and Coling BioNLP (Collier et al.,
2004).

In this paper we present a maximum entropy-
based system for NER in biomedical abstracts
which was entered in both of the above eval-
uations. Our system was originally designed for
the BioCreative evaluation and was then adapted
for the BioNLP task. We describe our system in
detail, including its exhaustive use of local con-
text as well as exploitation of a variety of external
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resources, including parsing, Google web-querying
and gazetteers. We present our results in both eval-
uations and consider how the quality of the data
affected the results. We found that performance in
the tasks was more reflective of data quality than
task difficulty. We discuss ways of improving anno-
tation to provide maximal performance for machine
learning systems.

The tasks

The BioCreative NER task required participants to
identify a single entity ‘NEWGENE’ in biomed-
ical abstracts. This entity corresponded roughly
to gene and protein names. Organizers provided
10000 sentences from MEDLINE abstracts as
training data and 5000 sentences as evaluation data.
The average number of entities per sentence was
roughly similar in both training and evaluation data
(approximately 1.19).

The BioNLP NER task required participants to
identify the five NEs ‘protein’, ‘DNA’, ‘RNA’,
‘cell line’ and °‘cell type’ in medical abstracts. The
task was based on the GENIA corpus (Ohta et al.,
2002), a corpus of MEDLINE abstracts annotated
for approximately 35 NE classes involved in bio-
logical reactions relating to transcription factors in
human blood cells. The original set of NEs was
collapsed into the above five by merging specific
classes, such as ‘protein molecule’, ‘protein family
or group’ and ‘protein substructure’, into broader
classes (‘protein’) and dropping other classes such
as ‘body part’ and ‘virus’ completely; the nested
annotations contained in the original corpus were
also removed for simplicity. The organizers did not
say whether the adaptation of the corpus for the
BioNLP task was done automatically. The entire
GENIA corpus of 18546 sentences was provided
as training data, and an additional 3856 sentences
as evaluation data. The average number of NEs per
sentence was quite different between the training
and evaluation data (for ‘protein’ 1.63 in training
vs. 1.34 in testing; for ‘DNA’ 0.51 vs. 0.27; for
‘RNA’ 0.05 vs. 0.03; for ‘cell line’ 0.20 vs. 0.12;
for ‘cell type’ 0.36 vs. 0.49).

Both BioNLP and BioCreative used the same
exact-match scoring criterion, in which participants
were penalized twice, both as a false positive (FP)
and as a false negative (FN), for an answer with
incorrect boundaries. For example, if the correct

Copyright © 2005 John Wiley & Sons, Ltd.
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entity was human interleukin-2 gene and the system
returned only interleukin-2, the former would be
counted as a FN and the latter as a FP.

System description

Our system is a maximum entropy Markov model
(McCallum et al., 2000) with a limited memory
quasi-Newton maximizer based on a system used
for the CoNLL 2003 shared task (Klein et al.,
2003). The system essentially uses a logistic regres-
sion model to classify each word, overlaid with a
Viterbi-style algorithm to find the best sequence
of classifications. Maximum entropy models have
been used with much success in NER tasks and
are known for their ability to incorporate a large
number of overlapping features. For both evalu-
ations we devoted most of our efforts to finding
useful features for the NEs required. The final sys-
tem makes exhaustive use of clues within the sen-
tence including character substrings, words, word
shapes, and detection of abbreviations, as well as
using longer-distance information obtained from
the surrounding abstract and relations obtained by
parsing, and various external resources, including a
Google web-querying technique, the TnT part-of-
speech tagger (Brants, 2000) and a gazetteer. We
normalized names of months and days of the week
to lower case, and mapped the British spellings of
a few common medical terms to their American
equivalents. In the following sections we describe
our full feature set.

We outline first the features utilizing the local
context, and second the features corresponding
to external resources and larger context. We also
describe a postprocessing phase aimed at reducing
boundary errors. Our final systems for both evalu-
ations employed over 1.25 million features.

Local features

We used a variety of features describing the imme-
diate context of each word, including the word
itself, the previous and next words, bi-grams of
the current word and next word and the current
word and previous word, character n-grams up to
a length of six, word shapes, and features describ-
ing the named entity tags assigned to the previous
words. ‘Word shapes’ refer to mappings of words

Comp Funct Genom 2005; 6: 77—-85.



System for identifying named entities in biomedical text 79

to simplified representations that encode attributes
such as length, and whether the word contains
capitalization, numerals, Greek letters, and so on.
We also incorporated part-of-speech (POS) tags
from the TnT tagger trained on the GENIA gold
standard for POS in biomedical text. We made
use of abbreviation matching to ensure consis-
tency of labels between an abbreviation and its
long form. A list of abbreviations and long forms
was extracted from the data using the method

of Schwartz and Hearst (2003), then all occur-
rences of the short and long forms in the data
were labeled as such (for BioNLP, we combined
the list with the short and long forms from the
BioCreative data). Features referencing these labels
were then included in the classifier. Following
(Kazama et al., 2002) we added disjunctive word
features. Lastly, a parentheses-matching feature
that signalled when one parenthesis was classi-
fied differently from its pair was added, in an

Table I. Local features

Word features

Bigrams

TnT POS
Character substrings
Abbreviations

Word shape

TnT POS + word

Word shape + word
Shape 4 word disj (BioNLP only)

Previous NE

Previous NE 4 word
Previous NE + POS

Previous NE + abbr

Previous NE + shape

PrevNE + shape + POS (BioNLP only)

Paren-matching

Wiy Wi— |, Wit |

Last ‘real’ word (BioCreat. only)

Next ‘real’ word (BioCreat. only)

Disj. of four prev words (BioNLP-5)

Disj. of four next words (BioNLP-5)

Wi+ Wi—|

Wi+ Wit

POS;, POS;_|, POSi4 |

Up to a length of six (BioNLP - prefix/suffix only)
abbr;

abbrj_| + abbr;

abbr; + abbriy |

abbri_| + abbr; + abbri; |

shape;, shape,_ |, shape; |

shape;_| + shape;

shape; + shape, |

shape;_| + shape; + shape;,

w; + POS;

wi—| + POS;

Wit + POSr

Wi—| + shape;

Wit + shape;

shape; 4 disj of 5 previous words

shape; + disj of 5 next words

NE,,\

NEi—2 + NE;—

NE;_3 + NEi—2 + NE_| (BioNLP only)

NEi_4 + NEi—3 + NE_2 + NEi_; (BioNLP only)
NE_| +w;

NEi—| 4+ POS,_| + POS;

NE/*Z + NE,,\ + POS%Z + POS,,\ + POSr
NE;_3 + NE—» + NE_| 4+ POS;_3 4+ POS;_, 4+ POS;_| +
POS; (BioNLP only)

NE;_| + abbr_| + abbr;

NEi_> + NEi_| 4 abbri_; 4 abbri_| + abbr
NE;_| + shape;

NE;_| + shape, |

NEi_| 4 shape;_, + shape;

NEi_2 + NE_| + shape;,_, + shape,_; + shape;
NE_ + NE_| +POS;_5 + POS;_| + POS; 4 shape,
NE/*} + NE/*Z + NE,,\ + POS!*} + POS/*Z + POS!*I +
POS; + shape;

Signals when one bracket in a pair has been assigned a different
tag than the other in a window of four words

Copyright © 2005 John Wiley & Sons, Ltd.
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effort to eliminate errors where the tagger clas-
sified matching parentheses differently. We com-
bined all of the above base-level features in various
ways. The full set of local features is outlined in
Table 1.

External resources and larger context

The features described here comprise various exter-
nal resources, including gazetteers, a web-querying
technique and relations obtained by parsing. The
basic assumption behind, and motivation for, using
external resources is that there are instances in the
data where contextual clues do not provide suffi-
cient evidence for confident classification. In such
cases, external resources may bridge the gap, either
in the form of word lists known to refer to genes
(gazetteers) or through examination of other con-
texts in which the same token appears and the
exploitation of more indicative contexts (as with
web-querying and use of surrounding text, such as
abstracts).

Deep syntax features

Our system benefits from relational information
obtained by parsing. While it has been stated that
full parsing of biomedical text is beyond current
technology, we were able to successfully parse the
BioNLP training and evaluation corpora using the
Stanford Parser (Klein and Manning, 2003) oper-
ating on the TnT POS tags. Since we did not
have parsed biomedical text with which to train
the parser, we used parsed Wall Street Journal ; we
believe that the unlexicalized nature of the Stan-
ford parser made it suitable for parsing data from a
different domain. For each word that appeared in a
noun phrase, the head and governor of the noun
phrase were extracted. These features were not
useful in BioCreative because it involved identi-
fication of only one entity, but they were useful for
BioNLP, where one had to disambiguate between
similar classes; Shen et al. (2003) and Nobata et al.
(1999) also benefit from use of head noun fea-
tures with the GENIA entities. This disambiguation
requires longer distance information and a better
representation of the context in which the word
appears. For instance, the word phosphorylation
occurs in the training corpus 492 times, in 482 of
which it was classified as ‘other’. However, it was

Copyright © 2005 John Wiley & Sons, Ltd.
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the governor of 738 words, of which 443 were ‘pro-
tein’, 292 were ‘other’ and only three were ‘cell
line’.

Abstract

A number of NER systems have made effective use
of how the same token was tagged in different parts
of the same document (Mikheev et al., 1999; Cur-
ran and Clark, 2003). A token which appears in an
unindicative context in one sentence may appear
in a very obvious context in another sentence in
the same abstract. To leverage this, we tagged each
abstract twice, providing for each token a feature
indicating whether it was tagged as an entity else-
where in the abstract. For BioCreative we were
provided only single sentences from abstracts; we
used cgi scripts to automatically obtain the corre-
sponding full abstracts from MEDLINE. In a prac-
tical application this would be unnecessary, since
one would always have the full abstract. Abstract
information was only useful when combined with
information on frequency.

Web

As the largest corpus in existence, the web has
been used effectively in a variety of NLP tasks
(Keller and Lapata, 2003; Grefenstette, 1999;
Markert et al., 2003). In our use of the web we
built several contexts indicative of target enti-
ties, such as ‘X gene’ or ‘X antagonist’ for
genes, ‘X mRNA’ for RNA, or ‘X ligation’ for
proteins. We then substituted the variable ‘X’
with potential entities and submitted the result-
ing patterns to the web. We used the number
of hits obtained for each pattern to build a fea-
ture for the classifier. While the underlying prin-
ciple was the same, the indicative contexts as
well as the input X to such patterns differed
in the two tasks. In both cases we submitted
the pattern instantiations to the web using the
Google API.

For BioCreative, we built patterns for each entity
X identified as a gene by an initial run of the
tagger. If at least one of the patterns returned
more than zero hits, the string was assigned a
‘web’ value for the web feature. The classifier
was then run again; this time incorporating the
web feature. Using web-querying only on likely
candidates for genes as identified by an initial

Comp Funct Genom 2005; 6: 77—-85.
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run of the tagger was more efficient than using
it on all words. However, this method does not
contribute to improving recall. In the BioNLP
task, we experimented with a different approach.
We built indicative contexts for each of the five
classes to be recognised and for each word X
that had a frequency lower than 10, as esti-
mated from the British National Corpus (BNC), a
100 million-word corpus taken from a wide vari-
ety of sources (Kilgarriff, 1997); we submitted
the instantiation of each pattern to the web. The
pattern that returned the highest number of hits
determined the feature value (e.g. ‘web-protein’,
or ‘web-RNA’). If no hits were returned by
any pattern, a value ‘O-web’ was assigned. The
same value was assigned to all words whose fre-
quency was higher than 10; using another value
for words with high frequency did not improve
performance. This method proved less success-
ful than the one used in our BioCreative sys-
tem; it is unclear whether this is due to the
method or to differences in the BioNLP task. In
future work we will reproduce the same experi-
ments on the two datasets in order to answer this
question.

Gazetteer

Our gazetteer was compiled from lists of gene
names from biomedical sites on the Web (such as
Locus Link) as well as from the Gene Ontology
and the data provided for BioCreative Tasks 1A
and 1B. The gazetteer was cleaned by removing
single character entries (‘A’, ‘1’), entries contain-
ing only digits or symbols and digits (‘37°, ‘3-1°),
and entries containing only words that could be
found in the English dictionary CELEX (‘abnor-
mal’, ‘brain tumour’). The final gazetteer contained
1731581 entries.

Frequency

We sought to incorporate information on fre-
quency primarily as a way to weight informa-
tion from external resources and to a lesser
extent to indicate independently which tokens
might be names. Because more frequent words
are more likely to be ambiguous and less fre-
quent words are far less likely to be ambigu-
ous, we assumed that information from exter-
nal resources would be of greater use for low-
frequency words. We therefore assigned to each

Copyright © 2005 John Wiley & Sons, Ltd.

word a frequency category corresponding to the
number of times the word was seen in a corpus.
For BioCreative the corpus used was the BioCre-
ative training data. For BioNLP, we improved on
this by using counts from the BNC. We found
that the frequencies obtained from the BNC were
more intuitive than frequencies from a medical
corpus.

Postprocessing

For BioCreative, we found that many of our errors
stemmed from gene boundaries and addressed this
issue in several ways. We removed genes contain-
ing mismatched parentheses from our results. We
also found that we obtained different boundaries
when we ran the classifier forwards vs. backwards
(reversing the order of the words) and obtained a
significant improvement by simply combining the
two sets of results and then keeping only the shorter
entity in cases where one entity was a substring
of another. We found that this postprocessing was
highly valuable and added approximately 1% to our
F-score. For BioNLP, we found that postprocess-
ing was not useful because running the classifier
forwards produced poor results and because mis-
matched parentheses were less of a problem.

Results and analysis

The performance of the system in both tasks is
shown in Tables 2 and 3; the system gets an overall
F-score of 83.2 for the BioCreative NER task and

Table 2. Results for BioCreative

Precision Recall F-Score
Gene/protein 82.8 83.5 83.2
Table 3. Results for BioNLP
Precision Recall F-Score
Protein 774 68.5 727
DNA 66.2 69.6 67.9
RNA 720 65.9 68.8
Cell line 59.0 47.1 524
Cell type 62.6 77.0 69.1
Overall 71.62 68.6 70.1

Comp Funct Genom 2005; 6: 77—-85.
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70.1 for the BioNLP task. Our system compared
well with other systems in both evaluations. Com-
parison to other results published on GENIA NE
subsets is difficult, because groups choose differ-
ent subsets of GENIA entities and often evaluate
on private corpora. Shen et al. (2003) report an
F-score of 66 on a 24-NE task using version 3
of GENIA to evaluate. Collier et al. (2000) and
Koichi and Collier (2003) attempt a 10-NE task,
using a private corpus to evaluate, and report F-
scores of 74 and 73. We have analysed our sources
of error for both BioCreative and BioNLP in depth
in Dingare et al. (2004) and Finkel er al. (2004);
these include a large percentage of boundary errors
(over 30% for both tasks), a smaller number of
errors due to coordination, and some errors due
to acronyms and tokens, whose orthographic form
might suggest they were entities but were in fact
measures or belonged to other entity categories;
also a number of errors due to low-frequency words
or words not encountered in the training data. How-
ever, we would like to focus here on the qual-
ity of training and evaluation data as a key fac-
tor leading to low performance. The 13-point dis-
crepancy between performance in BioCreative and
BioNLP might be partially explained by the vary-
ing task difficulty: BioNLP requires recognition of
five entities, while BioCreative requires only one;
BioNLP also requires disambiguation of systemati-
cally ambiguous gene and protein names. However,
task difficulty does not appear to be the primary
factor leading to lower performance. To demon-
strate this, we evaluated the system’s performance
on the BioNLP data for the task of identifying a
single class. When we eliminated the ‘cell line’
and ‘cell type’ categories and combined the ‘DNA’,
‘RNA’ and ‘protein’ categories into a single class,
we obtained an F-score of 74.4. This figure is sub-
stantially below the performance of 83.2 obtained
for the roughly equivalent ‘NEWGENE’ class in
BioCreative. Rather than task difficulty, lower per-
formance in BioNLP stems from higher inconsis-
tency in the annotation of the BioNLP data. In say-
ing this, we refer not only to errors in the evaluation
data, which resulted in lower scores, but equally to
inconsistencies in the training data, which caused
the system to learn incorrect patterns. Two of the
authors independently reviewing 50 of the system’s
errors found that 34-35 of these could be attributed
to inconsistent annotation of the training or eval-
uation data. We are not biologists; we based our

Copyright © 2005 John Wiley & Sons, Ltd.
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judgements of inconsistency on similarity of con-
text. However, the example pairs we list below
are so similar that we do not think the annotation
inconsistencies are due to biological subtleties.

Data annotation

Approximately one-third of the system’s errors
were due to highly variable annotation of frequent
terms such as lymphocyte, T cell and B cell; these
were variously annotated as ‘cell type’ and as ‘O’
(i.e. not in an entity). In example (1) below from
the evaluation data, our system labelled lympho-
cytes as a ‘cell type’ and was penalized for a FP.
However, our annotation is consistent with exam-
ple (2) which appeared only two sentences later in
the evaluation data; lymphocytes is annotated as a
‘cell type’ there.

(1) ... content of cAMP was also decreased in

lymphocytes by 33%.
(2) ... simultaneous alteration in the cAMP content
was observed in lymphocytes.

Parallel problems occurred with the frequent terms
hormone and receptor, which were variously anno-
tated as ‘protein’ and ‘O’. In example (3) from the
evaluation data, our system labelled receptors as
‘O’ rather than ‘protein’ and was penalized for a
FN; however, our annotation mirrors example (4),
which appeared in the training data.

(3) Concentration of the receptors to 1.25 (OH) 2D3
was elevated up to 39.7 fmole/mg after 1week

@) Concentration of receptors of hormonal form of
1,25 (OH) 2D3 was found to be minimal ...

In a smaller proportion of cases, entities were
variably annotated either ‘DNA’ or ‘protein’. In
example (5) below, which appeared in the eval-
uation data, kappa B enhancer was labelled as
‘protein’, while in example (6), which appeared in
the training data, it was labelled as ‘DNA’. Varia-
tion in labelling between ‘DNA’ and ‘protein’ also
occurred with enhancer elements.

(5) These kappa B-specific proteins ... interact with
the functional kappa B enhancer present in the
IL-2R alpha promoter.

(6) ... nuclear NF-kappa B is necessary to activate
the kappa B enhancer . ..

Inconsistent annotation of premodifiers also caus-
ed a small number of errors. In examples (7),

Comp Funct Genom 2005; 6: 77—-85.
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(9) and (11), which appeared in the evaluation data,
the modifiers human, inducible and unrearranged
were included in the entities ‘DNA’, ‘protein’ and
‘DNA’, respectively, while in the parallel examples
(8), (10) and (12), which appeared in the training
data, they were excluded. Our system left out the
modifiers, as in the training data, and was penalized
for both FPs and FNs.

(7) Kappa B-specific DNA binding proteins: role
in the regulation of human interleukin-2 gene
expression.

(8) Instead, signal transduction to the human IL-2
gene became disrupted.

(9) Mutation of a kappa B core sequence . . . blocks
the specific binding of two inducible cellular
factors.

(10) [Sequence analysis revealed] several putative
binding sequences for inducible transcription
factors .

(11) Different fragments of unrearranged human
variable region ... were used for ... in vitro
transcription . ..

(12) ... hGATA-3 may be involved in the regulation
of the unrearranged TcR delta gene expression

Some cases of inconsistent annotation were due
to cancer terms, such as neoplasm, tumor and
carcinoma, which were annotated either as ‘cell
type’ or ‘O’; we assume that this is because these
terms are ambiguous between cell types and disease
names.

(13) ... the authors studied specimens of breast car-
cinomas from 60 consecutive female
patients.

(14) Inflammatory infiltrates were analysed in tissue
sections of 76 breast carcinomas . . .

There was also uncertainty as to whether gene
systems, core sequences, and stretches of DNA
described by numerical location (e.g. —206 to
—195) should count as ‘DNA’ entities. Finally,
there was highly variable annotation of coordina-
tion.

Overall, the quality of data in the BioCreative
evaluation appeared to be significantly higher and
did not feature the systematic inconsistencies of the
BioNLP data (keeping in mind that the BioCre-
ative annotation task was also significantly eas-
ier). BioCreative’s innovation of enumerating sev-
eral alternative correct boundaries reduced spurious
boundary errors. However, there were some incon-
sistencies in the BioCreative data as well. In a few
cases organism names appearing in prepositional

Copyright © 2005 John Wiley & Sons, Ltd.

phrases after gene names were annotated as if they
were premodifiers [as in (15)], while in other cases
they were not [as in (16)].

(15) Transcriptional regulation of SUP35 and SUP45
in Saccharomyces cerevisiae.

(16) Expression of the ... protein Bax under the
control of a GALIO promoter in Saccharomyces
cerevisiae resulted in . ..

The annotation of mutations was also inconsistent;
the participants were given instructions not to
annotate mutations as genes and were given the
example p53 mutations; but in the training data
there were 25 instances of mutations annotated as
genes, including p53 mutations.

Improving biomedical annotation

That the task of biomedical NER is more difficult
than NER in the traditional newswire domain (with
its standard entities of ‘PERSON’, ‘LOCATION’
and ‘ORGANIZATION”) is obvious from the num-
bers; the highest score in the CoNLL 2003 NER
task (Sang and De Meulder, 2003; which used the
same scoring metric as BioNLP and BioCreative)
was 88.8%, five points higher than the highest score
in BioCreative and 18 points higher than our score
in BioNLP. What must be noted is that the dif-
ficulty of the domain has an effect on both the
annotation of the data and the performance of the
system. In a difficult domain where language is
convoluted and names are long and complex, data
annotation is more difficult. This is demonstrated
by results on interannotator agreement; while inter-
annotator agreement for the MUC-7 NER task
in the newswire domain was measured at 97%
(Marsh and Perzanowski, 1998), the few studies of
interannotator agreement in the biomedical domain
have shown interannotator agreement to be sub-
stantially lower, with F-scores in the range of
0.87 (Hirschman, 2003) to 0.89 (Demetriou and
Gaizauskas, 2003). In order to represent the state of
progress in biomedical NER accurately, evaluations
must focus as much on improving biomedical data
annotation as on improving systems. We note that
while the use of annotation guidelines has become
standard practice, particularly for complex annota-
tion tasks, the annotation of the BioCreative data
did not use annotation guidelines. We also know of
no guidelines used in the annotation of the GENIA

Comp Funct Genom 2005; 6: 77—-85.
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data used in the BioNLP task. The adoption of
annotation guidelines in a domain notorious for its
complexity, and where interannotator agreement is
known to be low, seems to be a promising direction
for improvement.

Annotation guidelines must address the proper
annotation of premodifiers, constructing rules to
distinguish the premodifiers that are necessary to
annotate. They must also specify how to anno-
tate coordinated entities, distinguishing between the
varieties of coordinations. Next, they must establish
whether to annotate high-level categories. It may
be that the variability in the annotation of words
like receptor and hormone was due to the fact that
receptors and hormones are types of protein con-
taining thousands of instances. Finally, annotation
guidelines must decide ambiguous cases of class
membership, such as whether DNA sequences are
examples of ‘DNA’ entities and whether tumours
are ‘cell types’.

Conclusions

We have presented a machine learning system for
biomedical NER and presented its performance in
the two biomedical NER evaluations to date. Our
system’s rich feature set, including exhaustive use
of local features and a variety of external resources,
leads to state-of-the-art performance. Our system
also adapts rapidly to new NE sets, as illustrated
by our adaptation to the BioNLP task.
Unfortunately, state-of-the-art performance in
biomedical NER continues to lag behind the high-
80s figures that the field has come to expect.
The BioNLP organizers may have had this gap
in mind when they emphasized that participants
should focus on deep knowledge sources, such
as co-reference resolution and use of dependency
relations over ‘widely used lexical-level features
(POS, lemma, orthographic, etc.)’. However, both
BioNLP and BioCreative showed that external
resources led to improvements of only 1-2%. Our
error analysis showed that consistent annotation
might have led to a 70% reduction in error rate.
While the proper exploitation of external resources
and deep processing remains an avenue to be
explored, we believe it cannot compare to the
gains that might result from consistently annotated
data. The challenge for future evaluations is to use
and publish annotation guidelines, to measure and

Copyright © 2005 John Wiley & Sons, Ltd.
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report figures for interannotator agreement, and to
pursue improvements in annotation of biomedical
data alongside improvements in systems.

Acknowledgements

This work was supported by a Scottish Enterprise Edin-
burgh—Stanford Link Grant (R36759) as part of the SEER
project, and by the National Science Foundation under the
Knowledge Discovery and Dissemination program.

References

Blaschke C, Hirschman L, Yeh A (eds). 2004. Proceedings of the
BioCreative Workshop, Granada; http://www.pdg.cnb.uam.es/
BioLINK/workshop_BioCreative_04/handout/

Brants T. 2000. TnT — a statistical part-of-speech tagger. In
Proceedings of the Sixth Applied Natural Language Processing
Conference ANLP-2000, Seattle, WA 6: 224-231.

Collier N, Kim J, Tateisi Y, Ohta T, Tsuruoka Y (eds). 2004. Pro-
ceedings of the International Joint Workshop on Natural Lan-
guage Processing in Biomedicine and Its Applications, Geneva,
Switzerland. http://www.genesis.ch/~natlang/JNLPBAO4.

Collier N, Nobata C, Tsujii J. 2000. Extracting the names
of genes and gene products with a hidden Markov
model. In Proceedings of the 18th International Conference
on Computational Linguistics (Coling 2000), Saarbruecken,
Germany; pp. 201-207.

Curran JR, Clark S. 2003. Language independent NER using
a maximum entropy tagger. In Proceedings of the 7th
Conference on Natural Language Learning (CoNLL-03),
Edmonton, Canada; 164—167.

Demetriou G, Gaizauskas R. 2003. Corpus resources for devel-
opment and evaluation of a biological text mining sys-
tem. In Proceedings of the Third Meeting of the Spe-
cial Interest Group on Text Mining, Brisbane, Australia;
http://www.pdg.cnb.uam.es/BioLink/Speciallnterest Text
Mining/PRESENTATIONS/rob_g.ppt

Dingare S, Finkel J, Nissim M, Manning C, Alex B. 2004. Explor-
ing the boundaries: Gene and protein identification in biomedical
text. In Proceedings of the BioCreative Workshop, Granada;
http://www.pdg.cnb.uam.es/BioLINK/workshop_BioCrea-
tive_04/handout/

Finkel J, Dingare S, Nguyen H, Nissim M, Manning C. 2004.
From syntax to the web. In Proceedings of the International
Joint Workshop on Natural Language Processing in Biomedicine
and Its Applications, at CoLing 2004, Geneva, Switzerland;
pp. 88-91.

Fukuda K. 1998. Toward information extraction: Identifying
protein names from biological papers. In Proceedings of the
Pacific Symposium on Biocomputing 705-716.

Grefenstette G. 1999. TheWWW as a resource for example-based
MT tasks. In Proceedings of ASLIB’99, Translating and the
Computer 21, London.

Hirschman L. 2003. Using biological resources to bootstrap text
mining. Presentation to the Massachusetts Biotechnology Coun-
cil Informatics Committee; http://www.e-biosci.org/sept/Hirs-
chman.pdf

Comp Funct Genom 2005; 6: 77—-85.


http://www.pdg.cnb.uam.es/BioLINK/workshop_BioCreative_04/handout/
http://www.genesis.ch/~natlang/JNLPBAO4
http://www.pdg.cnb.uam.es/BioLink/SpecialInterestTextMining/PRESENTATIONS/rob_g.ppt
http://www.pdg.cnb.uam.es/BioLINK/workshop_BioCreative_04/handout/
http://www.e-biosci.org/sept/Hirschman.pdf
http://www.pdg.cnb.uam.es/BioLINK/workshop_BioCreative_04/handout/
http://www.pdg.cnb.uam.es/BioLink/SpecialInterestTextMining/PRESENTATIONS/rob_g.ppt
http://www.pdg.cnb.uam.es/BioLINK/workshop_BioCreative_04/handout/
http://www.e-biosci.org/sept/Hirschman.pdf

System for identifying named entities in biomedical text 85

Kazama J, Makino T, Ohta Y, Tsujii J. 2002. Biomedical name
recognition: Tuning support vector machines for biomedical
named entity recognition. In Proceedings of the ACL 2002
Workshop on Natural Language Processing in the Biomedical
Domain 1-8.

Keller F, Lapata M. 2003. Using the web to obtain frequencies for
unseen bigrams. Comput Linguist 29(3): 459-484.

Kilgarriff A. 1997. Putting frequencies in the dictionary. Int J
Lexicogr 10(2): 135-155.

Klein D, Manning C. 2003. Accurate unlexicalized parsing.
Proceedings of the 41st Annual Meeting of the Association
for Computational Linguistics (ACL, 2003), Sapporo, Japan,
pp. 423-430.

Klein D, Smarr J, Nguyen H, Manning CD. 2003. Named entity
recognition with character-level models. Proceedings of the
7th Conference on Natural Language Learning (CoNLL 2003),
Edmonton, Canada; pp. 180—183.

Koichi T, Collier N. 2003. Bio-medical entity extraction using
support vector machines. In Proceedings of the Workshop
on Natural Language Processing in Biomedicine, held as
part of the 41st Annual Meeting of the Association for
Computational Linguistics (ACL, 2003), Sappoco, Japan, July
7-12, 2003.

Markert K, Nissim M, Modjeska N. 2003. Using the web for
nominal anaphora resolution. In Proceedings of the Workshop
on the Computational Treatment of Anaphora held as part of the
11th Conference of the European Chapter of the Association for
Computational Linguistics (EACL, 2003), Budapest, Hungary,
April 12-17, 2003. Dale R, van Deemter K, Mitkov R (eds)
39-46.

Marsh E, Perzanowski D. 1998. MUC-7 evaluation of IE tech-
nology: Overview of results. In Message Understanding

Copyright © 2005 John Wiley & Sons, Ltd.

Conference Proceedings T;http://www.itl.nist.gov/iaui/894.02/
related_projects/muc/proceedings/muc_7_proceedings/marsh_
slides.pdf

McCallum A, Freitag D, Pereira F. 2000. Maximum entropy
markov models for information extraction and segmentation. In
Proceedings of the 17th International Conference on Machine
Learning.

Mikheev A, Moens M, Grover C. 1999. Named entity recognition
without gazetteers. In Proceedings of the 9th Conference of
the European Chapter of the Association for Computational
Linguistics (EACL ’99), Bergen, Norway, June 8-12, 1999,
pp- 1-8.

Nobata C, Collier N, Tsujii J. 1999. Automatic term identification
and classification in biology texts. In Proceedings of the 5th
Natural Language Processing Pacific Rim Symposium (NLPRS
’99), Beijing, China, November 5-7, 1999; pp. 369-374.

Ohta T, Tateisi Y, Mima H, Tsujii J. 2002. GENIA corpus: an
annotated research abstract corpus in molecular biology domain.
In Proceedings of the Human Language Technology Conference,
San Diego, CA, USA, March 24-27, 2002.

Sang EFTK, De Meulder F. 2003. Introduction to the CoNLL-
2003 shared task: language-independent named entity recogni-
tion. In Proceedings of CoNLL-2003 142—147.

Schwartz A, Hearst M. 2003. A simple algorithm for identifying
abbreviation definitions in biomedical text. In Pacific Symposium
on Biocomputing, Kauai.

Shen D, Zhang J, Su GZJ, CTan. 2003. Effective adaptation
of hidden Markov model-based named entity recognizer for
biomedical domain. In Proceedings of the Workshop on Natural
Language Processing in Biomedicine, held as part of the 41st
Annual Meeting of the Association for Computational Linguistics
(ACL, 2003), Sapporo, Japan, July 7-12, 2003.

Comp Funct Genom 2005; 6: 77—-85.


http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/muc_7_proceedings/marsh_slides.pdf
http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/muc_7_proceedings/marsh_slides.pdf

BioMed Research R 5 Journal of International Journal of International Journal of

International '\ 82 Ll Nucleic Acids Pep‘u Genowmics

Biochemisiry
Research International

g = A ;
'y !
AI _‘ K

Enzyme
Research

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Evolutionary Biology

I Adyanges in . The SCientiﬁC N REES Il
Bioinformatics World Journal International Slqnal Tr’onsc]uchon

ISRN
Cell Biology

ISRN ISRN
Biotechnology Microbiology




