Electron rich salen-AlCl catalysts as efficient initiators for the ring-opening polymerisation of rac-lactide

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.eurpolymj.2019.07.017

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
European Polymer Journal

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 16. Sep. 2023
Electron rich salen-AlCl catalysts as efficient initiators for the ring-opening polymerisation of rac-lactide

*EaStCHEM School of Chemistry, University of Edinburgh, EH9 3FJ, UK

**School of Materials, University of Manchester, M13 9PL, UK

Email: j.garden@ed.ac.uk

Abstract

The ring-opening polymerisation of lactide is a useful means to prepare biodegradable materials with well controlled polymer architectures and bespoke material properties. While homogeneous ligand-Al-OR complexes have shown great success in this field, initiation from ligand-AlCl complexes has lagged behind. Here, we report four new salen-AlCl complexes featuring NEt₂-substituents, which display high catalyst activities towards rac-lactide ring-opening polymerisation (k_{obs} < 1.9 x 10^{-3} s^{-1}) via in situ activation with a single equivalent of propylene oxide. Incorporating Lewis basic NEt₂ groups into the ligand scaffold not only improves the initiation efficiency but also avoids the need for a Lewis basic co-catalyst and excess epoxide. Notably, studies of our amino-substituted catalysts reveal that the formation of a hexacoordinate aluminate species may hinder rather than enhance catalytic activity.

Graphical Abstract
Introduction

Aliphatic polyesters are essential as biodegradable materials with a broad range of applications including packaging,[1, 2] electronics[3] and medical devices.[4, 5] In particular, poly(lactic acid) (PLA) has many commercial applications due to its physical and mechanical properties. Ring-opening polymerisation (ROP) is one of the most efficient routes to prepare PLA with targeted material properties, which is achieved through careful control of the polymer microstructure. Some of the most powerful catalyst systems are homogeneous organometallic complexes, and aluminium-salen catalysts have garnered particular focus thanks to high catalyst activities, the low toxicity of the metal and a high level of control over the polymer microstructure.[6, 7]

Most of the highly effective aluminium catalysts for rac-lactide (rac-LA) ROP feature alkoxide initiating groups. However, recent studies by Thomas, Maron et al. revealed that salen-AlCl catalysts, which are generally poor initiators for ROP,[8] could achieve high catalyst activities when combined with an epoxide and an onium salt co-catalyst to generate an Al-alkoxide in situ (Figure 1).[9] This method of initiating ROP and ring-opening copolymerisations has gathered attention,[10-12] and epoxides have been utilised as in situ activators for rac-LA ROP with porphyrin-AlCl,[13] Sn(octanoate)₂,[14] and salen-FeCl systems.[15-17] The homogeneous Al-Cl catalysts generally require the presence of a co-catalyst such as PPNCl for efficient ROP initiation. These onium salts are proposed to enhance initiation through Lewis base coordination to the metal centre (Figure 1, Step A), increasing the nucleophilicity of the metal-chloride bond towards epoxide ring-opening. This Lewis base coordination is also proposed to enhance the nucleophilicity of the metal-alkoxide bond towards the ring-opening of rac-LA, facilitating propagation.[9] The interaction between the catalyst and the co-catalyst is likely to occur through a reversible equilibrium (Step A), with the pentacoordinate Al complex providing a vacant site for epoxide coordination and activation towards nucleophilic attack (Figure 1, Step B). On the basis of detailed mechanistic studies using a salen-AlCl/propylene oxide (PO)/PPNCl catalyst system based on the Jacobsen ligand, Thomas, Maron et al. proposed that initiation occurs through the formation of a highly nucleophilic hexacoordinate aluminate complex (Figure 1, Step C).[9] Notably, neutral aluminium chloride and aluminium alkoxide complexes were suggested to be inactive under the conditions investigated. The experimental set-up therefore involved overnight reaction of the Jacobsen-AICl catalyst with PPNCl in PO solvent, to form the active initiator species prior to the addition of rac-LA. These insightful studies highlighted the ability of salen-AICl species to efficiently polymerise rac-LA at ambient temperature. However, translation of this system to an industrial set-up may be limited by the need for excess epoxide (PO is highly toxic), an expensive PPNCl co-catalyst, and an overnight pre-activation of the catalyst components prior to the addition of rac-LA. Modification of the ligand scaffold offers the potential to alter the electronics at the metal centre and therefore influence the initiation mechanism and propagation rate.
This work explores the synthesis of a series of four salen-AlCl complexes bearing diethylamino substituents on the phenolic rings. The choice of this strongly electron donating substituent was driven by the desire to reduce the initiation period observed when using salen-AlCl complexes with epoxides as *in situ* activators. We hypothesized that strongly electron donating amine substituents would increase the nucleophilicity of the Al-chloride by stabilising the formation of a partial cationic charge on Al upon dissociation of the chloride group. Furthermore, we hoped that the electron donating effect may overcome the requirement for a Lewis base onium co-catalyst (Figure 1, Step A and/or Step C), avoiding the formation of a hexacoordinate Al species and opening up additional sites for monomer coordination. Here we show these complexes are able to overcome some of the current limitations observed with other salen-AlCl catalysts for the ROP of rac-LA.
Results and Discussion

A series of salen-AlCl complexes was synthesised by a straightforward two-step procedure (Scheme S1). Meta-diethylamino salicylaldehyde was selected due to the strongly electron donating amine groups para- to the imine group (Scheme 1a), enabling delocalisation of the lone pair of electrons to the imine nitrogen. To understand the impact of this ligand modification upon the Al-Cl bond strength, complex 1b was recrystallised from hot THF, affording yellow needle crystals. Single crystal X-ray diffraction studies revealed that the aluminium centre is penta-coordinate, connected to two phenolic oxygens, one chloride and two datively coordinated imine nitrogens (Scheme 1b). While the Al-N and the Al-O bond lengths are in the expected range for aluminium salen complexes, the Al-Cl bond is relatively long [Al1-Cl1, 2.200(2) Å] (Table S1).[18-24] The extended length and therefore lability of the Al-Cl bond are likely to result from the electron-donating diethylamino substituents increasing the electron density at the Al centre hence increasing the polarisation of the Al-Cl bond. Salen-AlCl complexes may offer some advantages in stability and ease of handling compared to salen-Al-alkyl catalysts (Figure S14).[25]

Scheme 1 (a) Synthesis of salen-AlCl complexes (1b-4b) and structure of salen-AlCl complexes 1b-5b (refer to Scheme S1 for reagents and conditions). (b) Molecular structure of 1b with displacement ellipsoids at the 50% probability level. THF solvent and hydrogen atoms have been omitted for clarity. Only one of two independent molecules in the unit cell is displayed (Figure S15).
Complexes 1b, 2b, 3b and 4b were tested for rac-LA ROP in the presence of PO (Table 1) using toluene solvent at 120 °C with a catalyst:PO:rac-LA ratio of 1:50:100. Under these conditions, all four complexes displayed catalytic activity towards rac-LA ROP (Table 1). As a control reaction, complex 1b was tested in the absence of PO showing that both components are required for polymerisation. While the comparison of catalysts 1-4b against other salen-Al systems is difficult, due to the range of conditions used, all four complexes demonstrate relatively high catalyst activities (Figure 2, Table S3-S4). Complexes 2b and 3b, bearing more flexible propyl diamine backbones, displayed significantly higher catalytic activities (2b, \(k_{\text{obs}} = 1.1 \times 10^{-3} \text{ s}^{-1} \); 3b, \(k_{\text{obs}} = 1.2 \times 10^{-3} \text{ s}^{-1} \)) than complexes 1b (\(k_{\text{obs}} = 7 \times 10^{-5} \text{ s}^{-1} \)) and 4b (\(k_{\text{obs}} = 8 \times 10^{-5} \text{ s}^{-1} \)). This observation falls in line with reported trends for related salen-AlCl complexes,[26-28] where increased activities have been attributed to the greater flexibility of the linking unit and distortion toward a trigonal bipyramidal geometry.[26] The conformational changes have been proposed to increase the accessibility of key transition states involved in the ROP process. The polymerisation kinetics showed a first-order dependence in monomer concentration, in line with typical ROP of lactide proceeding via a coordination-insertion mechanism.[29-32] All four complexes show a similar isotactic bias (Table 1), with values ranging from 0.69 (4b) to 0.74 (2b). While many studies have investigated the effect of steric bulk of ortho-substituents upon tacticity through a chain end control mechanism, the significance of meta-substituents is less well known. These findings suggest that bulky meta-substituents may allow some control over the inverse relationship between the rate of polymerisation and the degree of isotacticity.

The molecular masses determined by GPC analysis (\(M_{\text{n,obs}} \)) generally gave good agreement with the theoretical values (\(M_{\text{n,calc}} \)), indicating a well-controlled polymerisation (Table 1). However, the dispersity broadened at high conversions (>85%, Table S4), suggesting that chain transfer and/or transesterification may predominate in the late stages of the ROP (Table S4),[33] as has been observed for related catalyst systems.[9, 29, 34] MALDI-ToF analysis confirmed that the polymerisation could be initiated by the Al-chloride group ring-opening PO, as a series of α-chloropropoxyl, ω-hydroxyl end-capped PLA was observed (Figure S18). In addition, a second series corresponding to initiation by propylene diol was observed. Propylene diol is known to be present as an impurity in CO2/epoxide ring-opening copolymerisation (typically formed from the in situ reaction of PO with trace water, Figure S20 and S21),[35] and has been shown to act as a mono- or bi-functional chain transfer agent (CTA).[36] Unfortunately, MALDI-ToF analysis could not discern whether each propylene diol initiated one or two propagating chains due to the identical mass (\(\text{HOCH}_2\text{CH}_2(\text{CH}_3)\text{O} \) and H end groups for monofunctional chain transfer vs internal \(\text{OCH}_2\text{CH}_2(\text{CH}_3)\text{O} \) and two H end groups for bifunctional chain transfer). However, it is possible that bifunctional chain transfer contributes towards the broad dispersities observed at high conversions, as the rate of chain transfer with the (less reactive) secondary alcohol unit may become competitive with propagation at high conversions. Some cyclic PLA was also observed at low molecular weights.
Table 1 Ring-opening polymerisation of rac-LA mediated by catalysts 1b-4b\(^{[a]}\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Time (min)</th>
<th>% Conversion(^{[b]})</th>
<th>(M_n,\text{calc} / \text{Da})</th>
<th>(M_n,\text{obs} / \text{Da})</th>
<th>(D)(^{[c]})</th>
<th>(P)(^{[e]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1b</td>
<td>40</td>
<td>19</td>
<td>2726</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1b</td>
<td>120</td>
<td>43</td>
<td>6184</td>
<td>3150</td>
<td>1.2</td>
<td>0.70</td>
</tr>
<tr>
<td>3</td>
<td>2b</td>
<td>20</td>
<td>70</td>
<td>10140</td>
<td>8650</td>
<td>1.2</td>
<td>0.71</td>
</tr>
<tr>
<td>4</td>
<td>2b</td>
<td>40</td>
<td>90</td>
<td>13010</td>
<td>13270</td>
<td>1.7</td>
<td>0.74</td>
</tr>
<tr>
<td>5</td>
<td>3b</td>
<td>20</td>
<td>72</td>
<td>10319</td>
<td>7780</td>
<td>1.3</td>
<td>0.70</td>
</tr>
<tr>
<td>6</td>
<td>3b</td>
<td>40</td>
<td>94</td>
<td>13543</td>
<td>7840</td>
<td>2.0</td>
<td>0.70</td>
</tr>
<tr>
<td>7</td>
<td>4b</td>
<td>40</td>
<td>13</td>
<td>1920</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>4b</td>
<td>120</td>
<td>39</td>
<td>5623</td>
<td>6030</td>
<td>1.1</td>
<td>0.69</td>
</tr>
</tbody>
</table>

\(^{[a]}\) Reaction conditions: [catalyst]/[PO]/[rac-LA] = 1:50:100, [rac-LA] = 1 M in toluene, 120 °C. \(^{[b]}\) Determined by \(^1\)H NMR spectroscopy. \(^{[c]}\) Calculated as ([rac-LA]/[catalyst]) * (%conversion/100) * MW of lactide. \(^{[d]}\) Determined by gel-permeation chromatography (GPC) in THF solvent, universal calibration relative to polystyrene standards, \(M_n\) was calculated considering Mark–Houwink's corrections for \(M_n\) (\(M_n,\text{calc} = 0.58M_n,\text{GPC}\)).\(^{[34]}\) \(^{[e]}\) \(P\) values determined through \(^1\)H\(^{[1]}\)H\) NMR spectroscopic analysis using the method proposed by Coates and Ovitt.\(^{[37]}\)

Figure 2 Kinetic plot of ln[LA]₀/ln[LA]₁ versus time for the ROP of rac-LA catalysed by complexes 1b ■, 2b ●, 3b ▲, 4b ●, and 5b X. Reaction conditions: [catalyst]/[PO]/[rac-LA] = 1:50:100, [rac-LA] = 1 M in toluene, 120 °C.

Kinetic studies of catalysts 1-4b revealed a rapid initiation for all four complexes (Figure 2). This is particularly significant considering that closely related Jacobsen salen-AlCl complex 5b (Figure 2) was reported to require pre-activation by stirring the catalyst, epoxide and co-catalyst (e.g. PPNCl) for 16
hours prior to reaction with rac-LA, albeit under different reaction conditions. For comparison, 5b was also tested in rac-LA ROP at 120°C in toluene solvent (Figure 2). Highlighting the improved initiation using the diethylamino substituted salen ligand, 4b displayed a reduced induction period (approximately 3.5 minutes) in comparison to the analogous Jacobsen complex 5b (> 10 minutes). Furthermore, the induction period was significantly lower with complexes 1b-3b, which is likely to arise from the greater flexibility of the diamine backbone. These findings suggest that the diethylamino substituents stabilize the Al-Cl bond, in line with the molecular structure of 1b (vide supra). Notably, Jacobsen complex 5b also displays a significantly lower propagation rate than analogous 4b (4b, $k_{obs} = 8 \times 10^{-5} \text{s}^{-1}$; 5b, $k_{obs} = 2 \times 10^{-5} \text{s}^{-1}$). It may be expected that the electron donating amine substituents would decrease the Lewis acidity of the Al centre disfavoring lactide coordination and insertion, yet the relative propagation rates of 4b and 5b suggest that this is not the case. The higher catalytic activity of 4b may be due to the reduced steric bulk of the substituents facilitating lactide coordination, or possibly from a mechanistic difference between 4b and 5b.

To probe the initiation mechanism, the reaction between complex 1b and PO in d_6-toluene was monitored by 1H NMR spectroscopy (Figure S22). At ambient temperature, ring-opening of the epoxide was complete after 1 hour; it would be expected to occur much faster under the polymerisation conditions (120 °C). By comparison, the reaction between 5b and PO was slower, taking 5 hours to reach completion (Figure S23). The ring-opening of PO can occur through nucleophilic attack at either the methylene carbon or the methine carbon (Figure S24); these competitive pathways have both been reported in literature. However, NMR studies of complex 1b and PO revealed that nucleophilic attack occurred exclusively at the methylene carbon (Figure S25).

Quaternary ammonium salts have been reported to enhance the catalytic activity of a variety of homogeneous Al-Cl catalysts including 5b. However, addition of PPNCl (2 equivalents) to complex 2b unexpectedly resulted in a 15-fold drop in reactivity (Figure 3). To eliminate the possibility of the reduced activity of 2b arising from the interaction of PPNCl with the amine substituents, control reactions were performed in the presence of triethylamine (2 equivalents) (Table S6), which did not alter the catalyst activity. In contrast, the addition of 2 equivalents of PPNCl to catalyst 5b (toluene solvent, 120 °C) increased the catalyst activity and gave non-linear kinetics (Figure S26). These observations suggest that the mechanism may be different for AlCl complexes based on the diethylamino substituted and the Jacobsen salen ligands (1b-4b vs 5b).

Detailed experimental and computational studies by Thomas, Maron et al. suggest that in the presence of PO and PPNCl, Jacobsen catalyst 5b initiates rac-LA ROP through the formation of a highly nucleophilic (bis)alkoxide “ate” type complex (Figure 1, complex A). Under the reaction conditions investigated by Thomas, Maron et al. (room temperature, neat PO), all three components of the catalyst system (5b, PPNCl and PO) were essential for polymerisation to occur. To investigate potential mechanistic differences between 2b and 5b, diethylamino substituted 2b was tested under these alternative conditions, and displayed significantly lower activity than 5b (Figures S26 and S27). Contrary to the reaction in toluene, the catalytic activity of complex 2b was enhanced by the addition of PPNCl in PO solvent. In spite of the enhanced activity, GPC analysis revealed a bimodal polymer distribution and poorer control over the polymer molecular weight with 2b, suggesting that PPNCl
Our ability to initiate with just one equivalent of epoxide (Table S8). Catalyst 2b displayed a slightly improved catalytic activity (1 equiv. PO, \(k_{\text{obs}} = 1.9 \times 10^{-3} \text{s}^{-1} \); 50 equiv. PO, \(k_{\text{obs}} = 1.1 \times 10^{-3} \text{s}^{-1} \)) and a short induction period of approximately 3 minutes (Figure S32). The improved catalytic activity may arise from the lack of epoxide competing with lactide monomers for coordination at the metal centre. The \(M_n,\text{obs} \) values were slightly higher than the \(M_n,\text{calc} \) values, yet the chain length increased with conversion and the dispersions were narrow (Table S8). In contrast, 1 equivalent of PO resulted in reduced activity for 5b (1 equiv. PO, \(k_{\text{obs}} = 9 \times 10^{-6} \text{s}^{-1} \); 50 equiv. PO, \(k_{\text{obs}} = 2 \times 10^{-5} \text{s}^{-1} \)) (Figure S33). Furthermore, the addition of PPNCl to 5b with one equivalent of PO prevented polymerisation rather than promoting it, indicating that excess PO is required. This dependence may arise because the active bis-alkoxide “ate” species (Figure 1, complex A) cannot be formed with just one equivalent of PO, excess epoxide may be required to promote epoxide coordination (hence activation towards ring-opening), and/or the polar PO solvent may be required to stabilise key “ate” intermediates. The ability to initiate with just
one equivalent of epoxide is of key importance, as this overcomes the need for an excess of the highly toxic epoxide, which, together with eliminating the need for a co-catalyst, brings significant environmental benefits.

To further investigate the influence of PPNCl in our reaction systems, catalyst 2b was tested in the presence of varying equivalents of PPNCl (0.5 to 10 equivalents PPNCl vs 2b, Table 2). Rather than a simple inhibition, PPNCl initially inhibits the polymerisation (0.5 to 5 equivalents) but on increasing the PPNCl:catalyst ratio (10 equivalents) then promotes polymerisation (Figure S34). To understand whether this activity decrease was related to a prolonged initiation period, rather than a decreased propagation rate, the reaction kinetics were analysed using 0.5, 1 and 2 equivalents of PPNCl vs catalyst (Figure S35). The polymerisation rate was significantly slower in the presence of PPNCl and the kinetics deviated slightly from the previously observed first order dependence in monomer (Figure 3: no PPNCl, $k_{obs} = 1.1 \times 10^{-3} \text{s}^{-1}$; 2 equivalents, $8 \times 10^{-5} \text{s}^{-1}$). Although the reactivity enhancement with 10 equivalents of PPNCl is not yet well understood, excess PPNCl may activate rac-LA (or the epoxide) toward ring opening. Indicative of an interaction between rac-LA and PPNCl, lactide improves the solubility of PPNCl in PO solvent and 1H NMR spectroscopic analysis revealed a significant shift of the methine proton resonance when lactide was analysed in the absence ($\delta = 5.03$) or presence ($\delta = 5.07$) of PPNCl (Figure S36).

![Figure 3](image-url)

Figure 3 Kinetic plot of ln[LA]₀-ln[LA]ₜ versus time for the ROP of rac-LA catalysed by complex 2b with (●) and without (■) 2 equivalents of PPNCl co-catalyst. Reaction conditions: [catalyst]/[PPNCl]/[PO]/[rac-LA] = 1:2:50:100, [rac-LA] = 1 M in toluene, 120 °C.

Increasing the ratio of PPNCl:catalyst significantly reduced the polymer chain length ($M_{n,obs}/M_{n,calc}$ Table 2), suggesting that PPNCl can provide a nucleophilic chloride source to attack and ring-open an Al-coordinated epoxide. Towards the later stages of the polymerisation, bimodal distributions were observed, suggesting that the reaction is less well controlled in the presence of PPNCl (Table 2, entry 4; Figure S19). Notably, no conversion was observed in control reactions with only PPNCl, confirming that the salen-AlCl catalyst is required for activity, presumably through Lewis activation of the epoxide and lactide.[12] To test this hypothesis, alternative ammonium salts tetrabutylammonium bromide
(TBABr) and tetrabutylammonium iodide (TBAI) were investigated using catalysts 2b and 5b yielding similar reaction conversions to PPNCl (Table 2). Furthermore, chain end analysis by MALDI-ToF spectrometry revealed PLA terminated with a hydroxyl- and a bromo- or iodo-propoxyl group. While these observations suggest that the co-catalyst anion can initiate the polymerisation, halogen exchange between the aluminium chloride and the co-catalyst anion may also occur. Alternatively, the co-catalyst may act as a chain transfer agent (CTA, Figure 4). CTAs are typically protic sources such as mono- or bi-functional alcohols, which temporarily cap a propagating polymer chain and initiate a new chain under immortel polymerisation conditions thus reducing the polymer chain length (Figures S20 and S21, Table S5).[40] The decreased M_n values may arise from PPNCl acting as a CTA, exchanging the chloride anion with an aluminium-alkoxide group (where the alkoxide may either be the propagating polymer chain or the ring-opened epoxide) (Figure 4).

Table 2 Ring-opening polymerisation of lactide mediated by catalyst 2b in conjunction with a quaternary ammonium salt co-catalyst after 30 minutes.\[^a\]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Co-catalyst</th>
<th>Co-catalyst equivalents</th>
<th>% Conversion[^b]</th>
<th>$M_n,calc$ / Da[^c]</th>
<th>M_n,obs / Da[^d]</th>
<th>D[^d]</th>
<th>$M_n,calc / M_n,obs$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PPNCl</td>
<td>0</td>
<td>85</td>
<td>12241</td>
<td>13820</td>
<td>1.4</td>
<td>0.89</td>
</tr>
<tr>
<td>2</td>
<td>PPNCl</td>
<td>0.5</td>
<td>15</td>
<td>2157</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>PPNCl</td>
<td>1</td>
<td>12</td>
<td>1791</td>
<td>615</td>
<td>1.2</td>
<td>2.91</td>
</tr>
<tr>
<td>4</td>
<td>PPNCl</td>
<td>2</td>
<td>18</td>
<td>2585</td>
<td>520</td>
<td>1.2</td>
<td>4.97</td>
</tr>
<tr>
<td>5</td>
<td>PPNCl</td>
<td>5</td>
<td>50</td>
<td>5865</td>
<td>555</td>
<td>1.3</td>
<td>10.57</td>
</tr>
<tr>
<td>6</td>
<td>PPNCl</td>
<td>10</td>
<td>99</td>
<td>14202</td>
<td>835</td>
<td>1.4</td>
<td>17.01</td>
</tr>
<tr>
<td>7</td>
<td>TBAI</td>
<td>2</td>
<td>20</td>
<td>2818</td>
<td>585</td>
<td>1.3</td>
<td>4.82</td>
</tr>
<tr>
<td>8</td>
<td>TBAI</td>
<td>2</td>
<td>16</td>
<td>2286</td>
<td>620</td>
<td>1.2</td>
<td>3.69</td>
</tr>
</tbody>
</table>

\[^a\] Reaction conditions: [catalyst]/[PO]/[rac-LA]/[co-catalyst] = 1:50:100:n, [rac-LA] = 1 M in toluene, 120 °C. \[^b\] Determined by 1H NMR spectroscopy. \[^c\] Calculated as ([rac-LA]/[catalyst])×(%conversion/100)×MW of lactide, assuming that only one chain grows per catalyst system. \[^d\] Determined by gel-permeation chromatography (GPC) in THF, universal calibration relative to polystyrene standard, M_n was calculated considering Mark–Houwink’s corrections for M_n ($M_n(calc) = 0.58(M_n(GPC))$).[34]

Previous reports proposed that with excess PO, catalyst 5b undergoes an equilibrium between a salen-aluminium alkoxide/PPN alkoxide and a hexacoordinate (bis)alkoxide aluminium species (Figure 1, Step C).[9, 41–44] This could be viewed as a mode of chain transfer, through exchange of the propagating Al-alkoxide polymer chain for a dormant PPN-alkoxide chain (Figure 4). It seems plausible that this exchange could occur through the formation of a hexacoordinate anionic “ate” complex.[45, 46] Although there is limited literature evidence for the formation of such an “ate” complex,[47] Thomas, Maron *et al.*, investigated the catalyst activity of the alkoxide analogue of 5b, salen-ALOPr, with PPNCl, and observed PLA chains capped by both OPr and Cl-propoxyl groups.[9] Notably, increasing the number of PPNCl equivalents decreased the M_n,obs value in line with each Cl initiating a polymer chain, which was proposed to occur through an “ate” mechanism. With our systems, in the presence of PPNCl, it remains unclear whether the secondary initiation comes from the ammonium salt acting as a CTA, exchanging the Cl and alkoxide ligands (Figure 4), or whether the ammonium salt anion can attack and open a coordinated epoxide (via the formation of an “ate” complex).
On the basis of our experimental observations, we propose the following mechanism for rac-LA ROP using 2b and PPNCl (Figure 5). Firstly, the Al-Cl can attack a coordinated epoxide to form an Al-alkoxide species, which can then polymerise rac-LA. Alternatively, the Al-alkoxide group may be exchanged for an Al-Cl group through metathesis with PPNCl. The presence of additional equivalents of PPNCl may therefore disfavour the formation of the active Al-OR species by reforming the Al-Cl species and delaying propagation. MALDI-ToF spectroscopic analysis hints that this exchange may occur, as using TBABr or TBAI as the co-catalysts generated bromo- or iodo-propoxy end groups in addition to the chloro-propoxy end groups. Furthermore, PPNOR may play a role as a CTA, accounting for the reduced M_n,obs values observed using a greater number of equivalents. This proposed chain transfer mechanism was probed via investigation of the quaternary ammonium alkoxide salt TBA-OMe. Intriguingly, catalyst 2b with TBA-OMe polymerised rac-lactide, even in the absence of PO. Control polymerisations using only TBA-OMe (without catalyst 2b) gave only trace conversion of rac-LA (<3% after 2 hours). This observation indicates that OMe/Cl ion exchange could occur (possibly via an “ate” complex), resulting in the formation of an active alkoxide catalyst species capable of producing isotactic PLA, albeit with a loss of control ($\langle P_i \rangle = 0.70, 57\%$ conversion after 1.5 hours). It is a significant advantage that our catalyst system displays rapid initiation and efficient polymerisation in the absence of an expensive onium salt co-catalyst and with just one equivalent of epoxide. These observations are attributed to the presence of the electron donating diethylamino group labilising the Al-Cl bond towards epoxide attack and opening, and altering the Lewis acidity of the Al centre.
Figure 5 Proposed mechanistic pathway for rac-lactide polymerisation using catalysts 1b-4b, PPNCl and PO.

Conclusions

In conclusion, a series of salen-AlCl complexes bearing meta-NEt₂ phenol substituents (1b-4b) were developed for the ROP of rac-LA. The new complexes were characterised through a combination of NMR spectroscopy, elemental analysis, mass spectrometry and X-ray crystallography. In the presence of propylene oxide, all four complexes display high catalyst activities and good control over the polymerisation. X-ray diffraction and NMR reactivity studies confirmed that the incorporation of electron donating amino substituents labilises the Al-Cl bond, which improves the initiation efficiency in comparison to the analogous Jacobsen salen-AlCl complex (5b). The increased Al-chloride reactivity avoids the need for a Lewis basic ammonium salt co-catalyst and the use of excess epoxide, which is highly toxic. Importantly, these factors bring benefits in terms of safety, cost and environmental impact. In toluene solvent, the addition of a PPNCl co-catalyst diminishes the activity of 1b-4b but enhances the activity of 5b, suggesting that the initiation mechanisms differ between the diethylamino-substituted ligands and the Jacobsen analogue. Overall, these results demonstrate the potential of salen-AlCl complexes bearing intramolecular Lewis bases as relevant alternatives for rac-LA ROP.
Conflicts of Interest

There are no conflicts of interest to declare.

Acknowledgements

We gratefully acknowledge the University of Edinburgh, Royal Society (JAG, Grant RSG\R1\180101), EPSRC (MS, Grant EP/P026095/1) and the British Ramsay Memorial Trust (JAG) for funding.

Electronic supplementary information (ESI) available. CCDC 1912049.

References

