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Imaging Moving Targets for a
Forward Scanning Automotive SAR

Shahzad Gishkori, David Wright, Liam Daniel, Marina Gashinova and Bernard Mulgrew

Abstract—In this paper, we extend the forward-scanning SAR
methodology to reconstruct images of the moving targets, for
a forward-looking automotive radar. We adapt a matrix de-
composition approach to forward-scanning SAR in order to
separate moving targets from clutter/stationary objects. To solve
our optimisation problem, we propose an iterative solution based
on augmented Lagrangian method. Image focusing, over the
synthetic aperture, is achieved through spatial segmentation and
cross-correlation maximisation. Our proposed method results
in well-focused imaging of the moving targets with enhanced
angular resolution. Experimental results from simulation as well
as real-data corroborate our proposed methodology.

Index Terms—Automotive (forward-looking) SAR, Imaging
moving targets, angular resolution, low-rank matrix decompo-
sition.

I. INTRODUCTION

With the advent of advanced driver assistance systems
(ADASs) and highly automated driving (HAD) [1]–[3], au-
tomotive radars are increasingly receiving a lot of attention.
However, their primary use has been limited to detection only.
Imaging an automotive scene has primarily been achieved
through optical sensors, e.g., lidar and camera. However, in
adverse weather conditions, e.g., rain, fog, snow, etc., imaging
capability of the optical sensors is severely hampered. Such
conditions are not a limiting factor for the radar. However,
imaging with the radar is a very challenging research problem.
Recently, some works [4], [5] have appeared, where authors
use the automotive radar, operating in low-THz frequency
range, as an imaging sensor. One of the major challenges of an
automotive radar is to achieve required fine spatial resolution
[6], [7], both in range and azimuth. Range resolution can
generally be improved by increasing the bandwidth. However,
angular (azimuth) resolution (AR) is a function of the radar
antenna aperture-size which is limited due to physical con-
straints and it cannot be increased arbitrarily. A possible way
out is to use a synthetic aperture. However, an automotive
radar, most of the times, operates in the forward-look direction.
This brings in the challenge of AR enhancement for the
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forward-looking synthetic aperture radar (FL-SAR). A number
of previous research papers have looked at the problem of
AR enhancement for the FL-SAR for different radar oper-
ating environments, e.g., [8]–[14]. Nonetheless, specific to
the automotive environment, in [15] we have presented a
new approach to AR enhancement for SAR imaging, namely,
forward-scanning SAR (FS-SAR). This approach essentially
combines scene scanning with SAR processing. There, two
back-projection [16] based algorithms, namely, modified back-
projection (MBP) algorithm and compressed sensing (CS)
[17], [18] based back-projection (CBP) algorithm, generate
the SAR image with enhanced AR. The FS-SAR approach
has proven to be quite promising and substantial gains can
be achieved in automotive SAR imaging. However, [15] as-
sumes stationary targets. In this paper, we extend the FS-SAR
approach to imaging moving targets and address the related
challenges.
Generally, SAR processing without the consideration of target
motion results in defocussing or smearing of the target image,
causing a reduction in image resolution [19]. In order to
compensate for target motion, a number of methods have been
presented in the past, e.g., using the time-frequency signatures
[20], matched filtering of the target spectrum [21], image
refocusing [22]–[24], back-projection imaging [16], [23]–[26],
multi-look imaging schemes [25], [27]–[29], velocity SAR
[30], [31] and space-time array processing (with ground mov-
ing target indication) schemes [32]–[37]. Most of the previous
work is relevant for a side-looking SAR (SL-SAR), instead
of FL-SAR. Also, some of these suggested techniques depend
on rigorous estimation of target parameters, e.g., range, veloc-
ity, trajectory, etc., and some involve specialised processing
for target separation from clutter/background. Therefore, the
complexity of the SAR image generation/reconstruction, for
moving targets, is substantially increased. To circumvent it, in
this paper, we seek a non-parametric approach for FS-SAR. In
[38], motion compensation is achieved by modelling motion
errors as phase errors and then estimating the phase errors
in a sparsity-driven framework. This work has been extended
in [39] (see also [40] for earlier attempts) where the clutter is
separated from the targets by a matrix decomposition approach
along with estimating the phase errors. These methods are well
modelled for a spotlight mode SAR (Spot-SAR). However, the
matrix decomposition approach can still be used to separate
clutter from the moving targets for the FS-SAR mode as well,
as explained subsequently.
Initially, it was shown in [41] that missing/corrupted entries
of a matrix can be recovered under low-rank and incoherence
conditions. The idea is similar to recovering sparse signals
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in CS framework, which have a few large coefficients, low-
rank matrices have a few large singular values. Thus, similar to
minimising the sum of absolute values of a sparse signal vector
(in CS framework), low-rank matrix completion is achieved
by minimising the sum of singular values of a matrix [42].
Decomposing a matrix into a low-rank matrix and a sparse ma-
trix, i.e., low-rank plus sparse matrix decomposition (LPSD),
was proposed in [43], [44]. The solution basically alternates
between estimating the low-rank matrix and the sparse matrix.
This approach has been applied in video surveillance, face
recognition, background subtraction/movement detection, etc.,
[44]–[47]. LPSD is particularly useful in dynamic imaging
where the low-rank matrix can represent the background, i.e.,
columns of the low-rank matrix are temporally correlated, and
the sparse matrix represents the dynamic part of the image. In
our case, the low-rank matrix can represent the clutter and
the sparse matrix can represent the moving targets. Thus, an
elegant non-parametric method of separating clutter from the
moving targets can be achieved.
In this paper, we present a novel imaging technique for FS-
SAR mode of an automotive radar. The SAR image measured
at each sub-aperture is considered as a temporal snapshot
of a target scene. All the temporal snapshots are collected
in a matrix. A matrix decomposition approach, LPSD, is
applied under the FS-SAR signal model. In order to solve
our cost function, we use a state-of-the-art iterative solver,
namely, alternating direction method of multipliers (ADMM)
[48], [49]. This results in a clutter matrix, containing the
stationary targets, and a sparse matrix, containing the dynamic
part. Although, the dynamic part has been separated from
the clutter, the reconstructed SAR image is still smeared
because it is unfocused. Now, image focusing or synthetic-
aperture building (in FS-SAR mode) essentially requires track-
ing the targets over their respective trajectories. In automotive
scenarios, these trajectories can assume different geometries
and lengths. Thus, motion errors cannot be compensated as
merely phase errors. The LPSD process results in a set of
temporal snapshots which contain the dynamic-part only and
the corresponding reconstructed image shows trajectories of
the all the dynamic targets as well. Therefore, we process this
set of temporal snapshots and the resulting image, directly, in
order to focus the targets. It can be seen that our problem is,
primarily, that of segmentation/clustering and association. We
need to separate different targets and also build a synthetic
aperture. A number of classical methods for segmentation
are available in traditional image processing, e.g., K-means,
Gaussian mixture, etc., [50]. However, most of these methods
are based on pixel value (or intensity). Therefore, patches
with the same intensity are categorised as the same clus-
ters. In a radar image, different targets may have the same
intensity/reflectivity. Therefore, intensity based segmentation
may result in joining multiple targets together. To circumvent
this problem, we opt for density-based spatial clustering of
applications with noise (DBSCAN) [51]–[53] which is a
proximity based clustering scheme. Although, DBSCAN is
an effective proximity based method to achieve segmentation,
its performance decreases with increasing proximity of the
neighboring clusters. Since our aim is to obtain enhanced

AR, a straightforward implementation of DBSCAN may prove
to be counter-productive. Therefore, we extend DBSCAN to
handle the close proximity issues. In order to prove the validity
of our proposed method, we provide simulation results of a
scenario that emulates the automotive target scene. We have
also carried out a measurement campaign to collect real-data
in a laboratory-controlled experiment for the same purpose.
Results of the experiments verify the effectiveness of our
proposed methodology.
Our Contributions. The salient contributions of this paper are
as given below.
• We extend the FS-SAR methodology, for enhanced AR,

to imaging moving targets in an automotive scenario.
• We present a matrix decomposition approach, applicable

to FS-SAR mode, in order to separate the dynamic targets
from the clutter. In the process, we also obtain the target
trajectories.

• To solve our cost function we present an iterative solution
based on an augmented Lagrangian method, i.e., ADMM.

• We present an extended DBSCAN methodology for im-
age segmentation/clustering. It has the ability to obtain
clusters even in close proximity. Image focusing (or
association), over the aperture, is then achieved via cross-
correlation maximisation.

• We present experimental results, both with simulation as
well as real-data, to verify the validity of our proposed
method. We also compare the performance of our pro-
posed method with CBP.

Organisation. Section II provides the system model, Section
III presents the proposed LPSD method for FS-SAR, Section
IV explains the proposed image focusing method, Section V
describes step-by-step details of the implementation of the
proposed method, Section VI presents experimental results and
Section VII provides the conclusions.
Notations. Matrices are in upper case bold while column
vectors are in lower case bold, [A]i,j is the ijth entry of
the matrix A, IN is the identity matrix of size N × N , 0N
is a vector of zeros of size N × 1, (·)T denotes Transpose,
(·)H is Hermitian, (·)−1 denotes inverse, b·c is the floor
function, ⊗ stands for the Kronecker product, ? describes
the convolution, â is the estimate of a, Â is the estimate
of A, ∆

= defines an entity, ↑κ,κ′ (A) upsamples the matrix
A by an order κ along its rows and by an order κ′ along its
columns, the `p-norm of a vector a is denoted as ||a||p =

(
∑N−1
i=0 |[a]i|p)1/p, `p-norm of an M × N matrix is defined

as ||A||p = (
∑M−1
i=0

∑N−1
i=0 |[A]i,j |p)1/p and ||A||F denotes

its Frobenius-norm, i.e., ||A||F = ||A||2.

II. SYSTEM MODEL

The FS-SAR mode was proposed in [15] to improve the
AR in forward-looking automotive radars. It combines scene
scanning with SAR processing. At each step over the aperture,
the radar scans the target scene (via pulses) at different look-
angles and then moves on to the next step over the aperture.
Then, the reconstruction algorithm collects information from
all scans over the synthetic aperture to generate an image with
enhanced spatial resolution. A schematic of the FS-SAR mode
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Fig. 1: FS-SAR schematic [15].

can be seen in Figure 1 where the automotive radar scans
a target scene at different scan steps, l = 0, 1, · · · , L − 1,1

along the synthetic aperture, with angular range (over the
scan), θ ∈ [θmin, θmax] and target range, r ∈ (0, Rmax]. In a
Cartesian coordinate system, a point is represented as (xi, yj)
with xi and yj being coefficients of x-axis and y-axis, respec-
tively. Similarly, rij

∆
=
√
x2
i + y2

j and θij
∆
= arctan(yj/xi)

correspond to equivalent representation in a polar coordinate
system. The generic FMCW transmit pulse can be written as

sTx(t) = exp
(
j2πf0t+ jπβt2

)
(1)

where f0 is the carrier frequency, β ∆
= B/T is the chirp rate

with bandwidth, B, and pulse repetition interval (PRI), T , and
t : 0 ≤ t < T is the fast time. The received signal at lth scan
step and θth look-angle can be written as

sl,θ(t) =

U∑
u=1

αu exp
(
j2πf0[t− τl,θ(u)] + jπβ[t− τl,θ(u)]2

)
(2)

where αu is the reflectivity coefficient including the effects of
range related variations in the back-scattered energy, τl,θ(u) is
the two-way time delay of signal from the uth scatterer and U
is the total number of scatterers. Note, U can vary for different
scans over the aperture. However, for ease of notation, we
assume it to be the same. After deramping, low-pass filtering
and deskewing [54], (2) can be written as

sl,θ(t) =

U∑
u=1

αu exp(j2π(f0τl,θ(u) + βτl,θ(u)t)). (3)

The range profile can be obtained as

xl,θ(r) = F{sl,θ(t)}|r= fc
2β

(4)

where r is the range variable with linear transformation, r =
fc/2β, and F{·} is the Fourier transform operator w.r.t., t,
corresponding to frequency variable, f . The range resolution
is defined as, ∆r

∆
= c/2B, and each range bin is referenced

as, rnr , for nr = 0, 1, · · · , Nr − 1, where Nr
∆
= Rmax/∆r.

1Note, l should refer to physical distance. However, with some abuse of
notation, we use it for referencing aperture steps as well.

From (4), the target scene reflectivities along azimuth for the
rnr th range bin, i.e., xl,rnr (θ), can be given as

xl,rnr (θ) = {xl,θ(rnr )}
θmax

θ=θmin
. (5)

Note, we drop the subscript nr from xl,rnr (θ) in the following,
to reduce notations. The received signal, along the azimuth,
for range r and scan step l, can be written as [55],

yl,r(θ) = h(θ) ? xl,r(θ) + nl,r(θ) (6)

where yl,r(θ) is the measured signal, h(θ) is the antenna beam
(assuming the antenna beam-pattern is uniformly sampled over
θ ∈ [−φ,+φ]) and nl,r(θ) is additive white Gaussian noise
with variance, ν2. Let δθ = θ3dB/ζ represent the fine angular
sample/interval, where θ3dB is the 3 dB beamwidth and ζ is
a positive integer (ζ ≥ 1). Note, a high AR can be modelled
by considering ζ � 1. Since the radar is not able to take
measurements at very fine angular intervals, we define the
angular interval for measurements as, ∆θ = ξδθ, where ξ ≥ 1.
Note, for a very coarse angular measurement interval, ξ � 1.
Let h

∆
= [h(−φ), h(−φ + δθ), · · · , h(+φ)]H is an Nh × 1

vector, with Nh = b2φ/δθc+1, yl,r
∆
= [yl,r(θmin), yl,r(θmin +

∆θ), · · · , yl,r(θmax)]H is an Nθ × 1 vector, with Nθ =

b(θmax − θmin)/∆θc and xl,r
∆
= [xl,r(θ̃min), xl,r(θ̃min +

δθ), · · · , xl,r(θ̃max)]H is an Nx × 1 vector, with θ̃min
∆
=

θmin − (Nh − 1)δθ/2, θ̃max
∆
= θmax + (Nh − 1)δθ/2 and

Nx = ξNθ + Nh − 1, where θ̃min and θ̃max ensure that all
the targets within the radar beamwidth are accounted for. Sim-
ilarly, nl,r

∆
= [nl,r(θmin), nl,r(θmin + ∆θ), · · · , nl,r(θmax)]H

is an Nθ × 1 vector. Thus, we can write (6) as

yl,r = GHxl,r + nl,r (7)

where H is the (ξNθ − 1)×Nx block-Toeplitz matrix, i.e.,

H
∆
=


hH 0T(Nx−Nh)

0 hH 0T(Nx−Nh−1)

...
...

...
0T(Nx−Nh) hH

 (8)

depicting the convolution between antenna beam-pattern and
the target reflectivities, and G is an Nθ × (ξNθ − 1) selec-
tion matrix, i.e, [G]nθ,: = [I(ξNθ−1)](ξnθ−ξ+1),:, for nθ =
0, 1, · · · , Nθ−1. Note, we assume H to be the same for each
scan step. However, variations in H for each scan step can be
accommodated in the signal model. We can modify (7) for all
range bins as

Yl = GHXl + Nl (9)

where Yl
∆
= [yl,0,yl,∆r

, · · · ,yl,(Nr∆r−Nr)],
Xl

∆
= [xl,0,xl,∆r , · · · ,xl,(Nr∆r−Nr)] and Nl

∆
=

[nl,0,nl,∆r , · · · ,nl,(Nr∆r−Nr)] are Nθ × Nr, Nx × Nr
and Nθ ×Nr matrices, respectively.
Note, the system model presented above assumes a stop-
and-go principle for the radar. Generally, FMCW pulses
are long. Therefore, instantaneous Doppler should be
compensated [56]. Since our processing is carried out in
the time domain, the approach of [57] can be used in
conjunction with our approach to compensate for radar
motion during the transmission of FMCW pulses. This
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essentially means, shifting the contribution of each pulse by
a term which is a function of radar velocity and the squint
angle. Nonetheless, for simplicity of presentation, we carry
on with the stop-and-go assumption.

III. LPSD BASED FS-SAR IMAGE DECOMPOSITION

In this section we develop an LPSD framework for FS-SAR
image decomposition. We first explain the basics of LPSD and
then present the adaptation of LSPD to FS-SAR.

A. LPSD Basics

The LPSD aims at decomposing a matrix into a low-rank
matrix and a sparse matrix, under certain mild conditions. If
M is a matrix to be decomposed as a superposition of a low-
rank matrix, L, and a sparse matrix, S, it can be achieved by
solving the following optimisation problem (OP).

min ‖L‖∗ + λe‖S‖1 s.t. M = L + S (10)

where ‖L‖∗
∆
=
∑
k σk(L) is the nuclear norm, i.e, sum of the

singular values, σk, of L and λe is a positive constant. Note,
the nuclear-norm in (10) is an alternative to the explicit rank
function, i.e., rank(L). Minimising a rank function is an NP-
hard problem because the rank of a matrix is essentially the
total number of non-vanishing singular values of a matrix. In
contrast, the nuclear-norm is the sum of the singular values of
a matrix and it is a convex function. Raplacing a rank function
with a nuclear-norm draws the similar parallels as relaxing an
`0-norm with an `1-norm (in CS framework). Thus, (10) is
a (non-smooth) convex OP. Therefore, it can be solved by
interior point methods, e.g., CVX [58]. However, for faster,
accurate and stable results augmented Lagrangian multiplier
methods [59] can also be used.
The decomposition in (10) is unique and an exact recovery of
L and S is obtained provided the incoherence between these
matrices, i.e., the low-rank matrix is not sparse and the sparse
matrix is not low-rank. Such incoherence can be achieved if
the elements of singular vectors of the low-rank matrix are
spread-out (instead of being concentrated and spiky) and non-
zero elements of the sparse matrix occur at random locations
[44]. Note, the condition of incoherence between the low-
rank matrix and the sparse matrix has been inspired by the
incoherence notion in CS and draws similar parallels [18],
[41].

B. LPSD for FS-SAR

An FS-SAR image consists of moving targets and stationary
objects. Note, we refer to the moving targets as dynamic part
of the image and the stationary objects as clutter. Therefore,
LPSD can be applied to the FS-SAR mode. However, when
the radar is on the move, the dynamic part and the clutter
are defined w.r.t. the radar. In order to adapt the LPSD
framework to FS-SAR, we assume that imaging concerns a
specific area of the target scene and the radar motion has
been compensated w.r.t. this specific target area. Therefore,
the radar can be considered as if stationary w.r.t. the target
area, and the only movement present in the image is due to the

moving targets. Note, radar motion can be easily compensated
since we already have complete knowledge about it, e.g., via
inertial measurement unit (IMU).
Let (9) is written in the following vectorised form.

yl = [INr ⊗ (GH)]︸ ︷︷ ︸
∆
= Φ

xl + nl (11)

where yl
∆
= vec(Yl), xl

∆
= vec(Xl) and nl

∆
= vec(Nl) are

NθNr×1, NxNr×1 and NθNr×1 vectors, respectively, and
Φ

∆
= [INr ⊗ (GH)] is an NθNr × NxNr joint measurement

matrix. Since the aim of FS-SAR is to enhance AR, Nθ �
Nx. Therefore, (11) is an under-determined system of linear
equations. The CBP algorithm in FS-SAR involves solving the
following (fused LASSO [60]) OP.

x̂l = arg min
xl

‖yl −Φxl‖22 + λe ‖xl‖11 + λf ‖Dxl‖11 (12)

where λe > 0 controls element-wise sparsity in xl, λf > 0 is
a fusion penalty parameter and D is the NxNr×NxNr fusion
matrix, defined as

D
∆
=


−1 +1 0 0 · · · 0 0
0 −1 +1 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · −1 +1
0 0 0 0 · · · 0 +1

 . (13)

We can see that OP (12) is solved for each aperture position.
Then, a composite image can be generated via back-projection.
Note, a composite image essentially means, a SAR image,
i.e., an image involving all of the aperture samples. Now, in
order to adapt the LPSD framework to FS-SAR, we stack
the measurements, obtained at each sub-aperture, together and
solve the OP, jointly. To this end, we modify (11) in the
following form.

Y = ΦX + N (14)

where Y
∆
= [y0,y1, · · · ,yL−1], X

∆
= [x0,x1, · · · ,xL−1]

and N
∆
= [n0,n1, · · · ,nL−1] are NθNr × L, NxNr × L

and NθNr × L matrices, respectively. Here, our aim is to
decompose X into a low-rank matrix, C

∆
= [c0, c1, · · · , cL−1],

and a sparse matrix, S
∆
= [s0, s1, · · · , sL−1]. Note, the size of

C and the size of S is the same as the size of X. The low-
rank matrix (C) is representative of the clutter or stationary
background of the target scene and the sparse matrix (S) is
representative of the dynamic part of the target scene, i.e, the
moving targets. Now, the LPSD OP for FS-SAR can be written
as

{X̂, Ĉ, Ŝ} = arg min
X,C,S

1

2
‖Y −ΦX‖2F + λ‖C‖∗

+ λe‖S‖11 + λf‖DS‖11
s.t. X = C + S (15)

where λ > 0 is the penalty parameter for nuclear-norm. A
large value of λ means a smaller nuclear-norm, i.e., reduced
rank of clutter matrix. Solving (15) via ADMM generates the
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following OP.

{X̂, Ĉ, Ŝ, Ẑ,Ŵ} = arg min
X,C,S
Z,W

1

2
‖Y −ΦX‖2F + λ‖C‖∗

+ λe‖Z‖11 + λf‖W‖11
s.t. X = C + S,Z = S,W = DS (16)

where Z and W are both NxNr × L auxiliary matrices,
respectively. An unconstrained form of cost function in (16)
can be written as

L(X,C,S,Z,W,KX ,KZ ,KW )

=
1

2
‖Y −ΦX‖2F + λ‖C‖∗ + λe‖Z‖11 + λf‖W‖11

+ 〈KX , (X−C− S)〉+
µX
2
‖X−C− S‖2F

+ 〈KZ , (Z− S)〉+
µZ
2
‖Z− S‖2F

+ 〈KW , (W −DS)〉+
µW
2
‖W −DS‖2F (17)

where KX , KZ and KW are all NxNr×L matrices containing
column vectors of Lagrange multipliers, 〈K,A〉 ∆

= tr(KHA)
is the inner product of two matrices, tr(·) is a trace operator
and µX , µZ , µW are positive constants impacting the rate
of convergence. A solution of (16) can be obtained by the
following successive approximations.

X̂[n] = arg min
X

L
(
X,C[n−1],S[n−1],K

[n−1]
X

)
(18)

Ĉ[n] = arg min
C

L
(
X[n−1],C,S[n−1],K

[n−1]
X

)
(19)

Ŝ[n] = arg min
S

L
(
X[n−1],C[n−1],S,Z[n−1],W[n−1],

K
[n−1]
X ,K

[n−1]
Z ,K

[n−1]
W

)
(20)

Ẑ[n] = arg min
Z

L
(
S[n−1],Z,K

[n−1]
Z

)
(21)

Ŵ[n] = arg min
W

L
(
S[n−1],W,K

[n−1]
W

)
(22)

which involves differentiating L w.r.t. the optimisation variable
while keeping other variables fixed, at each nth iteration, until
convergence. Update for Lagrange multipliers is given as

K
[n]
X = K

[n−1]
X − µX

(
X[n] −C[n] − S[n]

)
(23)

K
[n]
Z = K

[n−1]
Z − µZ

(
Z[n] − S[n]

)
(24)

K
[n]
W = K

[n−1]
W − µW

(
W[n] −DS[n]

)
. (25)

Now, solving (18) we get

X̂[n] =
(
ΦHΦ + µXI

)−1

×
(
ΦHY + µX

(
C[n−1] + S[n−1]

)
−K

[n−1]
X

)
(26)

where the inverse in (26) does not depend on X. Therefore,
it can be obtained off-line. Solving (19) we get

C[n] = χ

((
X[n−1] − S[n−1] +

1

µX
K

[n−1]
X

)
,
λ

µX

)
(27)

where χ(·, ·) is a thresholding function of the singular values,
defined as

χ (A, λ) = U η (Σ, λ) VH (28)

where matrices U, Σ and V are obtained via SVD of A, i.e.,
svd(A) = UΣVH and η(·, ·) is an element-wise thresholding
function, defined as

η (s, λ) =
s

|s|
max (|s| − λ, 0) (29)

where s can be a complex variable. Note, η (Σ, λ) would apply
(29) to each element of Σ. Thus, χ (A, λ) involves doing SVD
of A, thresholding the singular values of A w.r.t. λ and then,
reconstituting A. Solving (20) we get

Ŝ[n] =
(
µWDHD + (µZ + µX) I

)−1

×
(
µX

(
X[n−1] −C[n−1]

)
+ µZZ[n−1] + K

[n−1]
X

+K
[n−1]
Z + DHK

[n−1]
W + µWDHW

)
(30)

where the inverse component in (30) is independent of S.
Therefore, it can also be computed off-line. Solving (21) we
get

Z[n] = η

((
S[n−1] − 1

µZ
K

[n−1]
Z

)
,
λe
µZ

)
(31)

and solving (22) we get

W[n] = η

((
DS[n−1] − 1

µW
K

[n−1]
W

)
,
λf
µW

)
(32)

where η(·, ·) is defined in (29). The iterations stop once the
desired convergence has been achieved. The stopping criterion
can be either an update tolerance or the maximum number
of iterations. The estimates Ŝ, Ĉ and X̂ can now be used
to generate an image of dynamic targets only (i.e., γŜ for
composite and γ ŝl for lth aperture), clutter only (i.e., γĈ for
composite and γĉl for lth aperture) and their combination (i.e.,
γX̂ for composite and γx̂l for lth aperture), respectively.

IV. FS-SAR IMAGE FOCUSING

Although, LPSD separates clutter from the moving targets,
the resulting image is still smeared. Therefore, image focusing
is required. This focusing is not the same as traditional image
focusing. Due to the FS-SAR mode, we need to collect
information from each scan step and combine it coherently
to build a synthetic aperture. Image focusing, for the FS-
SAR images of the moving targets, can be considered here
as a synonym for synthetic aperture building. To this end, we
turn to image segmentation approaches. We use an extended
DBSCAN approach to obtain clustering. Afterwards, we use
correlation maximisation to focus moving targets (or build
synthetic aperture), as explained in the following.

A. DBSCAN Basics

Given a set, P , of image pixels, segmentation/clustering
procedure partitions it into clusters, Uu, for, u = 0, · · · , Ǔ−1,
based on a distance measure, e.g., Euclidean distance or Man-
hattan distance, such that,

⋃Ǔ−1
u=0 Uu = P and

⋂Ǔ−1
u=0 Uu = ∅.
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Generally, clustering algorithms consider pixel values (or in-
tensities) as elements in P . However, DBSCAN is a proximity
based algorithm and considers spatial proximity of pixels for
clustering/segmentation. Therefore, P consists of Cartesian
coordinates of the significant points. There are a few important
parameters associated with DBSCAN. In the following, we
briefly describe them for the sake of clarity of the proposed
methodology. See [51] for more details.
ε-Neighborhood. In DBSAN, the proximity between two
points is established through a distance measure. The
Euclidean distance between two points, a at (xi, yj)
and b at (xi′ , yj′), can be written as, ∆prox

ab =√
(xi − xi′)2 + (yj − yj′)2. Now, the ε-neighborhood of the

point a can be defined as, N ε
a

∆
= {b ∈ P : ∆prox

ab ≤ ε}.
Core Object. A point a is specified as a core object if its ε-
neighborhood consists of a minimum number of neighbors,
Nmin, i.e., |N ε

a | ≥ Nmin. A point b is considered directly
density-reachable (DDR) from a core object a if, b ∈ N ε

a . If
there are multiple points between b and a, DDR from each
other consecutively, then b is considered density-reachable
(DR) from a. A core object b is considered density-connected
(DC) to a core object a if a common point, c, is DR from
both, i.e., c ∈ N ε

a and c ∈ N ε
b . A point b is considered as a

border point if it is not a core object but it is DR from another
core object.
Density Based Cluster. A density based cluster consists of
points that are DR or DC to each other, w.r.t. ε and Nmin.
We can see from above that ε and Nmin are the two most
important parameters for DBSCAN. The algorithm essentially
searches for core objects based on these parameters and then
extends the clusters through DR and/or DC relations. It is
also clear that clusters can take arbitrary shapes. Points which
are not part of the clusters are considered as noise. We refer
the reader to [53] for further details on implementation of
DBSCAN.

B. Focusing with Extended DBSCAN

The most challenging scenario for DBSCAN is the scenario
when two or more clusters are in close proximity to each
other. Despite fine-tuning ε and Nmin, there is a chance that
multiple clusters in close proximity might merge into each
other. In our case, the primary aim of FS-SAR mode is to
enhance the AR. This is particularly important when the targets
are in close proximity to each other. Thus, a straightforward
application of DBSCAN may impact AR enhancement neg-
atively. To prevent this, like [52], we introduce a non-spatial
parameter, ρ, for DBSCAN, along with ε and Nmin. We call it
extended DBSCAN (EDBSCAN). The parameter ρ relates to
the intensities of the points. The Euclidean distance between
the intensities of two points, a at (xi, yj) and b at (xi′ , yj′),
can be written as, ∆intens

ab =
√

(γij − γi′j′)2, where γij and
γi′j′ are the intensities of the points a and b, respectively.
Note, the introduction of ρ follows the same philosophy
of fusion as in (12) or (15), i.e., an extended object has
smoother transitions in its reflectivities and different objects
will have abrupt discontinuities between their reflectivities. In
EDBSCAN, the neighborhood is dependent on both ε and ρ.

Thus, the ερ-neighborhood of the point a can be defined as,
N ερ
a

∆
= {b ∈ P : ∆prox

ab ≤ ε,∆intens
ab ≤ ρ}. A point a is

considered as a core object if its ερ-neighborhood consists of a
minimum number of neighbors, Nmin, i.e., |N ερ

a | ≥ Nmin. The
relations, i.e., DDR, DR and DC in DBSCAN are extended to
EDBSCAN, in a similar way, to generate the clusters.
Once the dynamic part of the measurements has been obtained
(see Section III-B), we apply EDBSCAN on the composite
image i.e., γŜ, instead of aperture-wise image, i.e., γ ŝl . The
reason is that a composite image contains more information
regarding the target and its trajectory. Segmentation via EDB-
SCAN creates a cluster of a moving target along with its
trajectory. We can see that EDBSCAN is especially useful
in automotive scenarios where multiple moving targets can
acquire any trajectory. Therefore, the segmentation procedure
should be able to handle clusters of arbitrary shapes as well
as being able to resolve clusters in close proximity.
Now, in order to focus the image, we intersect individual
clusters with aperture-wise images. This generates the con-
tributions of each aperture to the cluster. The image can now
be focused on the last aperture image (or any other aperture
image, if required) via correlation maximisation. After image
focusing, the dynamic-part image can be combined with the
clutter-part image to generate a final focused image of the
target scene.

V. PROPOSED METHOD IMPLEMENTATION

In this section, we provide step-by-step details on imple-
menting the proposed method.

1) Measurements are obtained according to (9). Here, we
assume that the measurements correspond to a specific
target area and that the radar motion has been com-
pensated w.r.t. the stationary objects. Thus, the only
movement noticeable in the measurements is due to the
moving targets. The measurements are stacked together,
according to (14) to obtain Y.

2) We use ADMM to estimate X as an inverse problem for
FS-SAR mode, along with decomposing it into a clutter
matrix C and a sparse matrix S via LPSD in (15). To
this end, we iterate over (18)–(25). We consider a warm-
start for the estimate of X, i.e., X̂[0] = ΦHY, which is
akin to matched filtering. We initialise C, S, Z, W, KX ,
KZ and KW as null matrices. Our stopping criterion for
iterations is both the maximum number of iterations as
well as the update tolerance of X̂[n]. The final estimates
correspond to the values when iterations have stopped.

3) The estimates X̂, Ĉ and Ŝ can be used to form the
respective images. For this, we use back-projection as
in [15]. Mathematically, the image formation can be
represented as follows. A composite image of all the
aperture samples at point (xi, yj) can be written as

γX̂
ij =

L−1∑
l=0

[↑1,κ′ (X̂l)]Iθij ,Irij (33)

where ↑κ,κ′ (·) denotes an upsampling function which
interpolates a matrix by an order κ along its rows and
by an order κ′ along its columns, X̂l is the reshaped
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matrix form of x̂l (see (11)), Iθij is the row index and
Irij is the column index in ↑1,κ′ (X̂l), corresponding
to angle θij and range rij , respectively. The composite
image can be related to aperture-wise images as

γX̂ =

L−1∑
l=0

γx̂l (34)

where γx̂l is essentially the back-projected image of
x̂l, with x̂l being first reshaped into X̂l. Similarly,
composite images, i.e., γĈ and γŜ, and aperture-wise
images, i.e., γĉl and γ ŝl , w.r.t. Ĉ and Ŝ can be obtained
accordingly.

4) We apply EDBSCAN on the composite dynamic image
γŜ. Since Ŝ is sparse, γŜ is also sparse, containing few
objects represented by a continuum of reflective points.
We tune parameters ε, ρ and Nmin. We select ε as a
function of image spatial resolution, ρ as a function of
pixel intensities and Nmin as a function of ε.

5) The composite dynamic image can be represented as a
sum of clusters, i.e.,

γŜ =

Ǔ−1∑
u=0

γŜ[Uu] (35)

where γŜ[Uu] represent the image (γŜ) with only uth
cluster present. Now, for image focusing, we intersect
each cluster image with aperture-wise images, i.e.,

γ ŝl
i:j:

[Uu] = γ ŝl
⋂
γŜ[Uu] (36)

where γ ŝl
i:j:

[Uu] represents an image patch with the con-
tribution of lth aperture in uth cluster and i:j: represents
a range of i and j values. Let the image is focused on
the last aperture position and γ ŝL−1 [Uu] represents the
image with only the contribution of L−1th aperture for
uth cluster. Then, the focused image for uth target can
be obtained as

γ̃Ŝ[u] =

L−2∑
l=0

align
(
γ ŝl
i:j:

[Uu], γ ŝL−1 [Uu]
)

(37)

where the align(·, ·) function merges two images based
on 2-D cross-correlation maximisation. A focused image
of all the moving targets can be obtained as

γ̃Ŝ =

Ǔ−1∑
u=0

γ̃Ŝ[u] (38)

and the final focused image including the clutter and
dynamic targets can be obtained as

γ̃X̂ = γ̃Ŝ + γĈ. (39)

VI. EXPERIMENTAL VERIFICATION

In this section, we provide experimental results to verify our
proposed methodology. We present both simulation as well as
real-data experiments for this purpose. We use MBP to show
the measured signal. MBP in [15] is defined as

γij =
∑
θ

∑
l

[↑κ,κ (Yl)]θ,Irij . (40)
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Fig. 2: Antenna Pattern [15].

We compare the performance of our proposed algorithm with
CBP. Note, CBP essentially consists of using the solution of
(12) in (33).

A. Simulation

We consider an FMCW radar operating at f0 = 300 GHz.
With a signal bandwidth B = 6 GHz, the range resolution
can be calculated as, ∆r = 0.025 m. As in [15], we consider
θ3dB ≈ 2◦ and deterministically emulate the beam-pattern as
suggested by [61]. Figure 2 shows the beam-pattern. The target
scene is considered as a 2-D grid of spatial resolution ∆r.
Figure 3 shows the target scene. There are 8 extended targets
in total, of size 5×4 grid cells. There are 6 stationary targets to
represent the clutter and 2 moving targets. The moving targets
move along x-axis in opposite directions. At each aperture
step, moving targets travel 4 grid cells along x-axis. Since the
radar motion has already been compensated, we assume the
radar is referenced at (x0, y0). We consider L = 20 aperture
frames, with scan angle range θmin = −20◦ and θmax = +20◦,
at angular intervals ∆θ = 0.25◦.
Figures 3a–3d show target scene at aperture frames l = 0,
l = 7, l = 15 and l = 19, respectively. We can see that at
each aperture position, the reflectivity of clutter targets varies.
Thus, the clutter targets are not strictly fixed. However, the
moving targets have fixed reflectivity. Figure 4a shows the
result of image reconstruction via MBP. We can see that due
to the movement of targets, reconstructed image is smeared.
Now, in order to compare the performance of our proposed
algorithm, we also present the results of applying CBP. Figure
4b shows the performance of image reconstruction via CBP.
Since CBP does not consider the movement of the targets,
the reconstructed image is smeared over the trajectories of
the moving targets. However, we can see an improvement
in AR, as the gap is evident between the trajectories of the
targets. Figure 5 shows the performance results of applying
our proposed matrix decomposition approach. We can see
from Figures 5a and 5b that the clutter/stationary targets have
been completely separated from the dynamic/moving targets.
Figure 5c shows the combined result of clutter targets and the
dynamic targets. We can see that due to our proposed OP,
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Fig. 3: Target scene, aperture step: (a) l = 0, (b) l = 7, (c)
l = 15, (d) l = 19.
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Fig. 4: Reconstructed image via: (a) MBP (b) CBP.

we obtain good AR enhancement like CBP. However, in the
proposed formulation, we are also able to separate the dynamic
part from the clutter. In Figure 6a and 6b, we plot matrices
Ĉ and Ŝ, in order to get an insight into LPSD. We can see
that frames (i.e., columns of the matrix) in Ĉ are correlated
with each other whereas the frames in Ŝ are uncorrelated and
dynamic. Thus, LPSD for FS-SAR is a viable non-parametric
option to separate clutter from the moving targets.
Nonetheless, we can see from Figure 5b that the image of the
moving targets is still smeared (along the direction of motion)
and it needs to be focused. To this end, we use EDBSCAN.
We consider EDBSCAN parameters as, Nmin = 10, ε = 0.05
m and ρ = 0.12. Figure 7a shows the result of applying
EDBSCAN. We can see that the two targets along with
their respective trajectories form two clusters. Despite their
proximity, EDBSCAN has been able to separate the two
clusters and provide good segmentation results. Then, we focus
the image as explained in step 5) of Section V. Figure 7b
shows the result of focusing. We can see that the targets are
well focused on the last aperture step. Figure 7c shows the
combined image of clutter and dynamic targets with focusing.
We can see that the final reconstructed image shows improved
AR as well a good focusing of the moving targets.
Note, the above results show the performance of our proposed
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Fig. 5: Composite image: (a) clutter only, γĈ (b) dynamic-part
only, γŜ (c) combined, γX̂.

(a) (b)

Fig. 6: Matrices: (a) Ĉ (b) Ŝ

method in the absence of measurement noise. However, it can
be shown that a good performance can be achieved in the
presence of noise as well. Figure 8 shows the performance of
the proposed method for a signal-to-noise ratio (SNR) of 10
dB, where the SNR is defined in terms of (14) as

SNR
∆
=
‖ΦX‖2F
NθNrν2

. (41)

Comparing Figures 5 and 7c with Figure 8, we can see that
the proposed method provides a good performance even in
the presence of noise. Note, here we consider EDBSCAN
parameters as, Nmin = 10, ε = 0.05 m and ρ = 0.14.

TABLE I: Specifications of 300 GHz Radar

Modulation FMCW

Frequency Range 287− 293 GHz

Transmit Bandwidh (B) 6 GHz

Chirp Duration (T ) 1 ms

Sampling Frequency 4.096 MHz

Angular Step (∆θ) 0.25◦

Range Resolution (∆r) 0.025 m

3 dB Beamwidth (θ3dB) 1.3◦
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Fig. 7: (a) Clustering via EDBSCAN (b) Focused image, γ̃Ŝ

(c) Focused image, γ̃X̂.
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Fig. 8: Imaging in the presence of noise: (a) clutter only, γĈ

(b) dynamic-part only, γŜ (c) combined image, γX̂ (d) focused
image, γ̃X̂.

B. Real Data

In order to carry out real-data experiments (in controlled
laboratory conditions), we have considered a f0 = 300 GHz
FMCW radar with transmit bandwidth B = 6 GHz. Figure
9 shows the measured antenna pattern with 3 dB beamwidth
θ3dB ≈ 1.3◦. Table I shows the specifications of the radar.
Figure 10 shows the schematic for the measurement setup.
We consider 2 trolleys of size 1 × 0.5 × 0.55 (length ×
width × height) m3, as our extended moving targets. We
consider 6 traffic cones as stationary targets, i.e., scene clutter.

-5 -4 -3 -2 -1 0 1 2 3 4 5

Angle [deg]

-60

-50

-40

-30

-20

-10

0

A
m

p
lit

u
d
e
 [
d
B

]

Fig. 9: Measured Antenna Pattern for 300 GHz radar.
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Fig. 10: Measurements schematic.

We consider L = 21 aperture steps/frames, with scan angle
range θmin = −20◦ and θmax = +20◦, at angular intervals
∆θ = 0.25◦. At each aperture step, the trolleys move by 10
cm in opposite direction along the x-axis. Figure 11 shows the
300 GHz radar used for the measurements. Figure 12 shows
the target scene at different aperture positions, i.e., l = 0,
l = 10 and l = 20. The EDBSCAN parameters are considered
as, Nmin = 12, ε = 0.1 m and ρ = 0.1.
Figure 13a shows the measured scene by reconstructing the
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Fig. 11: 300 GHz radar.

(a) (b)

(c)

Fig. 12: Moving targets and clutter: (a) l = 0 (b) l = 10 (c)
l = 20

image via MBP. As expected, image of the moving targets is
smeared. Although, some improvement in the AR is visible.
Figure 13b shows the reconstructed image via CBP. We can
see that the AR is better than the MBP. However, the patch for
the moving targets is still smeared because, like MBP, CBP
also does not consider target movement. Note, the maximum
intensity value of the images has been normalised to unity,
in this section. Figure 14 shows the result of applying our
proposed method. Figures 14a–14c show the performance of
our proposed image decomposition approach for clutter only,
dynamic-part only and their combination, respectively. We
can see from Figures 14a and 14b that the clutter has been
successfully separated from the dynamic part. Figure 14d
shows the performance of our image focusing method on the
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Fig. 13: Reconstructed image via: (a) MBP (b) CBP.
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Fig. 14: Composite image: (a) clutter only, γĈ (b) dynamic-
part only, γŜ (c) combined, γX̂ (d) focused, dynamic-part only,
γ̃Ŝ (e) γ̃Ŝ with labels (f) focused, combined, γ̃X̂.

dynamic-part only image. In comparison to Figure 14b, we
can see that the image of the moving targets is well-focused.
Even the details of the trolley, e.g., handle, are also visible
(see Figure 14e with labels). Figure 14f shows the combined
focused image of the clutter and the moving targets. We
can see that our proposed method has achieved substantially
improved AR as well as image focusing for both the clutter
and the moving targets.

VII. CONCLUSIONS

In this paper, we have extended the FS-SAR methodology
to imaging moving targets in automotive scenarios. We have
adapted a non-parametric matrix decomposition approach to
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FS-SAR in order to separate the dynamic part of the image
from the clutter. In the process, we have also obtained trajec-
tories of the moving targets. We have proposed an ADMM
based iterative method to solve our optimisation problem. To
focus the image, i.e., to build the synthetic aperture, we have
proposed an extended DBSCAN method to achieve spatial
segmentation along with the application of cross-correlation
maximisation. We have achieved well-focused imaging of the
moving targets along with improved angular resolution. We
have provided experimental results, both with simulation as
well as real-data, to prove the validity of our proposed method.
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