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Summary: 

The electrostatic solvent competition model accounts for the thermodynamic properties of aromatic 

interactions in supramolecular systems, when edge-to-face contacts are considered as two point CH- 

hydrogen bonding interactions.  
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Abstract 

Fresh experimental data reveals that aromatic edge-to-face interaction energies measured in both molecular torsion 

balances and supramolecular zipper complexes can be predicted using a simple solvation model and / H-bond 

constants. 

 

Introduction 

Supramolecular systems provide the ideal testing ground for the development of theoretical models for 

intermolecular interactions and molecular recognition processes in general.
1
 Structurally well-defined 

chemical systems allow the relationship between chemical structure and the thermodynamics of non-

covalent interactions to be systematically explored, facilitating the design of experiments that test 

specific aspects of theoretical and computational models. In principle, it is possible to compute the 

properties of molecular systems from first principles using quantum mechanics  ab initio. However in 

practice, this remains a challenging problem, because the free energy changes associated with non -

covalent interactions are of the order of a few kJ mol
-1

, and so the enthalpy and entropy contributions for 

a conformational ensemble of solvated molecules must be calculated to a level of accuracy that is 

difficult to achieve routinely. In favourable cases, where computational methods are successful, the 

calculation provides a description of the system as a whole, and it is difficult to dissect out the individual 

factors that govern the observed behaviour. The interplay of collectively optimised variables complicates 

the partitioning of individual energetic contributions to reliably separate cause and effect.  Therefore, 

more approximate empirical descriptions of the relationship between chemical structure and molecular 

interactions continue to provide valuable tools to guide the supramolecular design process. The molecular 

torsion balance designed by Wilcox is one of the most elegant examples of a supramolecular scaffold for 

probing structure-activity relationships in aromatic interactions (Figureure 1).
2-5

 We recently proposed a 

simple model that accounted for the variation in the results obtained for different torsion balance 

systems.
6
 The ideas are summarised Figureure 2.  

 

Figure 1. The ‘molecular torsion balance’ developed by Wilcox for the quantification of aromatic interactions 

(a) the unfolded (free) state (b) the folded (bound) state which contains an additional edge-to-face aromatic 

interaction. 
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Figure 2. Generic folding equilibrium for a molecular torsion balance including the solvent. The position of 

equilibrium is determined by four free energy contributions: i) S - the interaction between the aromatic face 

and the solvent; ii) S - the interaction between the edge of the aromatic ring and solvent; iii)  - the edge-

to-face aromatic interaction; and iv) SS - the interaction between displaced solvent molecules. 

 

The observed free energy difference between the two conformational states of the molecule is determined 

by the competition between the edge-to-face aromatic interaction in the folded state and the solvation 

interactions in the open state. The trends in the aromatic interaction energies observed in this system can 

be understood using the electrostatic solvent competition model that we introduced for understanding 

solvent effects on H-bonding interactions.
7
 Specifically, Equation 1 allows accurate prediction of how 

both the solvent and the aromatic substituents affect the equilibrium position of the torsion balance. 

G = – ( – S) ( – S)  Equ. (1) 

where  and  are H-bond parameters for the edge and face ring, S and S are the corresponding 

parameters for the solvent. In the system discussed previously,
[6]

 aromatic interactions were measured as 

a function of face ring substituent, so Equation 1 can be reduced to: 

G = – ( – S)  + c  Equ. (2) 

The experimental studies have recently been expanded by the Diederich group, so that we now have a 

complete picture for both types of torsion balance in both C6D6 and CDCl3.
5
 Detailed ab initio 

calculations that partition the computed energy into different contributions suggest that the experimental 

behaviour is dominated by dispersion phenomena.
8
 Nevertheless, the new experimental results are also in 

excellent agreement with Equation 2, which is based solely on electrostatic arguments (Figureure 3). 

Y solvent theory experiment 

CF3 benzene 1.6 2.0 

CF3 chloroform 1.4 1.3 

H benzene 0.0 0.2 

H chloroform -0.2 -0.1 

Table 1. Values of ( – S) from Equation 2 (theory) and from the slopes of the best fit straight lines in 

Figureure 3 (experiment). 



Page 3 of 8 

 

Figure 3. Experimental folding free energies for molecular torsion balances plotted as a function of the H-

bond acceptor constants () of the aromatic face for various X-substituents.  (a) Y = CF3 (b) Y = H in C6D6 

(black) and CDCl3 (grey).  H-bond parameters from DFT/6-31G* calculations (see ESI for details and the 

AM1 version of this plot). 

 

The key point for understanding aromatic interactions in the torsion balance system relates to the 

properties of the solvents. Chloroform (S = 2.2) is more polar than benzene (S = 1.0), so the 

electrostatics of the edge-to-face interaction should be damped in chloroform.  However as we pointed 

out previously,
[6]

 the torsion balance behaviour can be rationalised in a quantitative way by considering 

an important fundamental difference between aromatic-aromatic interactions and aromatic-chloroform 

interactions. Specifically, chloroform can make only one H-bond to the face of an aromatic ring, due to 

its steric bulk, whereas an aromatic ring makes two CH-π contacts with the face of an aromatic ring. 

These intermolecular interaction motifs are indeed observed in structures from X-ray and neutron 

diffraction studies (Figureure 4). Thus the  parameter that must be used in Equation 1 for an aromatic CH 

H-bond donor is double the value for a conventional H-bond interaction at a single site on the edge of the 

aromatic ring. This is the model that accounted quantitatively for the trends discussed in our previous 

paper: for the CF3 edge ring,  = 2 x 1.8; for the unfunctionalised edge ring,  = 2 x 1.0; for the benzene 

solvent, S = 2 x 1.0; for the chloroform solvent, S = 1 x 2.2.
6
 

 

 

Figure 4. Aromatic interaction motifs determined by X-ray and neutron diffraction studies. a) aromatic 

solvation by chloroform
9
 b) aromatic solvation by benzene (CCDC no. BENZEN01).

10
 c) the aromatic edge-
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to-face interaction in a folded torsion balance (Y = NO2, X = Me, CCDC no. PIWYEZ)
2
 and d) in a model 

compound of the supramolecular zipper complexes (Figure 6, Y = t-Bu, X = NMe2, CCDC no. ACANAT).  

Aromatic substituents in a), c) and d) omitted for clarity. 

 

 

Figure 5. Experimental folding free energies for molecular torsion balances where X = Me (black) and X = H 

(unfilled circles) in CDCl3 (grey) versus the H-bond donor constants () of the aromatic edge protons for 

various Y-substituents. H-bond parameters from DFT/6-31G* calculations (see ESI for details and the AM1 

version of this plot). The electrostatic surface potentials of the aromatic face are almost identical for X = H 

and Me. 

 

This model makes an excellent prediction of the behaviour described in the new work reported by 

Diederich (Table 1, Figureure 3). In effect, chloroform is only marginally more polar than benzene with 

respect to aromatic interactions, but the CF3-substituted edge ring is significantly more polar than the 

unfunctionalised edge ring. Thus large electrostatic effects are observed for the CF3 edge ring 

interactions, because the combined effect of the two aromatic CHs is significantly more polar than either 

chloroform or benzene ( = 3.6 versus S = 2.2 or 2.0). The substituent effects are attenuated slightly on 

changing the solvent from benzene to chloroform, but the effects are not  large because the change in S is 

small (2.0 compared with 2.2). For the unfunctionalised edge ring,  and S are similar in all cases, and 

so substituent effects are small in both solvents. Although, there is some scatter in Figureure 3, the 

agreement between the predicted and experimentally observed trends is clear (minor discrepencies may 

come from interactions involving the ring substituents that are not accounted for in this simple first-order 

model). 

It is possible to gain some insight into the influence of the edge ring substituent on the torsion balance 

folding free energy by collating experimental measurements made by Wilcox, Ren, and Diederich in 

CDCl3 where the face ring substituent is constant, X = Me or H.
2, 4, 5

 In this case, the electrostatic solvent 

competition model is reformulated as Equation 3. 
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G = – ( – S)  + c Equ. (3) 

Figureure 5 shows that the torsion balance folding free energy does indeed correlate with the H-bond 

constant of the edge ring, . The strong substituent effect on the aromatic interaction in this system arises 

because CDCl3 is a weak H-bond acceptor (S = 0.8) that does not compete well with the aromatic face 

(= 2.2). Although the overall trend is clear, the data in Figureure 5 come from different laboratories, 

and the variation in  is small, hampering a quantitative interpretation of the slope (values between 1.2 

and 2.8 are consistent with the data as illustrated, with a best fit value of 1.6).  Assuming two CH -π 

interactions as before, the prediction of Equation 3 is a slope of 2(– S) = 2.8. 

 

 

Figure 6. Supramolecular zipper complexes used in combination with the double-mutant cycle approach for 

quantifying edge-to-face aromatic interactions for various combinations of X and Y (NMe2, H and NO2). 

 

The double H-bond hypothesis for the edge-to-face aromatic interaction illustrated in Figureure 3 has 

implications for understanding structure-activity relationships in other systems. For example, we can now 

apply this model to the intermolecular aromatic interactions that we have measured using the double 

mutant cycle approach in chloroform (Figureure 6).
11

 Both the 
1
H NMR solution structures of these 

zipper complexes and the crystal structures of model compounds revealed two CH-π interactions. The 

free energy of the edge-to-face interactions in this system is given by Equation 4 where the value of  for 

the edge ring is multiplied by a factor of two to account for the two CH-π interactions that are made with 
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the face ring in the bound state and the two solvent interactions that are made in the free state. The factor 

of 1.5 accounts for the solvation of the three solvent molecules liberated upon complexation.  

G = – 2 + 2s + S – 1.5 SSEqu. (4) 

The predictions of Equation 4 agree remarkably well with the experimental measurements of edge-to-face 

aromatic interactions reported previously (Figureure 7 and supporting information Table S3). The quality 

of the correlation is particularly good for attractive interactions, but where the interaction energy is less 

favourable (interactions with the face of a nitroaromatic) the data are more scattered, because alternative 

conformations and substituent interactions contribute to the observed interaction energies.  

 

 

Figure 7. Comparison of experimental (∆∆Gexpt) and predicted (∆∆Gpred) edge-to-face aromatic interaction 

energies in supramolecular zipper complexes in CDCl3. / values used in Equation 3 from DFT/6-31G* 

calculations (see ESI for details and the AM1 version of this plot). 

 

The analysis presented here indicates that electrostatic effects play a dominant role in determining the 

properties of aromatic interactions in organic solvents. The electrostatic solvent competition model that 

we introduced previously for H-bonding interactions can be applied equally well to aromatic interactions. 

However, the delicate balance of desolvation and functional group interactions is critical in these weaker 

non-covalent interactions and gives rise to remarkably different behaviour for closely related systems. 

The experimental results suggest that edge-to-face aromatic interactions involve two point H-bonding 

between the two CH donors of the edge ring and the π-electron density of the face ring. This allows the 

aromatic CH H-bond donor to compete with the more polar CH donor of chloroform which can only 

make a single point interaction, that sterically occludes the whole of the face of the π-system. This 

analysis has allowed us to rationalise a wide range of data on aromatic interactions in torsi on balances 

and supramolecular zipper complexes, providing a simple account of the interplay between solvent 

effects and substituents on both the edge and the face ring.  
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