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Abstract 

Solvent effects are implicated as playing a major role in modulating electrostatic interactions via through-

space and polarization effects, but these phenomena are often hard to dissect. By using synthetic molecular 

torsion balances and a simple explicit solvation model, we demonstrate that the solvation of substituents 

substantially affects the electrostatic potential of aromatic rings. Although polarization effects are important, 

we show that a simple additive through-space model also provides a reasonable account of the experimental 

data. The results deliver insights into solvent structure and might contribute to the development of 

computationally inexpensive solvent models. 

 

Introduction 

Molecular recognition is determined by many factors, among which the electrostatic components have been 

identified as being one of the most important.
1-3

 However, unraveling the complicated influence of solvents on 

the behavior of chemical and biological systems remains a long-standing challenge.
3-5

 Indeed, solvation is 

implicated in governing the rate and outcome of chemical reactions,
5-7

 the structure of biological molecules,
8
 

and the position of supramolecular and conformational equilibria.
9-19

 For instance, the specific solvation of 

substituents has been attributed to pKa changes in positions several atoms away.
20-22

 However, combined 

experimental and theoretical approaches capable of unambiguously identifying the specific electronic effects 

of substituent solvation are required. 

Here we have synthesized a series of simple molecular torsion balances for measuring the electronic 

properties of aromatic rings as the solvent and substituents are varied (Figure 1). Comparison of experimental 

conformational energies with calculated electrostatic potentials (Figure 2) has enabled quantification of the 

modulating effects arising from substituent solvation (Figure 3), and an examination of the predictive capacity 

of (force-field-like) through-space models of long-range electrostatic effects (Figure 4). 

The concept of using conformationally interchangeable molecular probes for measuring weak interactions was 

introduced by Ōki,
23

 and later popularized by Wilcox,
24-25

 who coined the phrase ‘molecular torsion balances’ 

to describe these types of systems. Since then, molecular torsion balances have been used to investigate a 

diverse range of non-covalent interactions
9-15, 26-33

. The molecular torsion balances employed in this study exist 

in equilibrium between two conformational states (Figure 1). Due to the partial double-bond character of the 

formamide C-N bond, the rate of interconversion between the formyl rotamers is slow on the NMR timescale. 

Thus, integration of 
19

F-NMR peaks corresponding to each conformer allows accurate determination of the 

equilibrium constant, K, and the conformational free energy ∆Gexp = –RTlnK.  

In accord with the behavior of other molecular torsion balances, the position of the conformational 

equilibrium is sensitive to the electronic effects of substituents.
9-13

 As shown in Table 1, we found that ∆Gexp 
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values measured in apolar organic solvents correlated well with m Hammett substituent constants (R
2
 = 0.95-

0.98, Figure S6), but less well with p (R
2
 = 0.85-0.95, Figure S7).

34
 The correlation with m can be attributed 

to intramolecular interactions occurring between the formyl group and the meta-positions on each side of the 

balance (which come into close proximity due to the propeller-like twist of the aromatic rings). Thus, the 

formyl oxygen prefers to reside over the least electron-rich X-substituted ring when X = NO2, while the other 

conformer is preferred when X = NEt2 (Figure 1). 

 

 

Figure 1. Molecular torsion balances used in this study. Rotation about the formamide group is slow on the 

NMR timescale, thus allowing electronic and solvent effects on the conformational free energy ∆Gexp to be 

determined via integration of the 
19

F-NMR peaks corresponding to each conformer. 

 

Consistent with this hypothesis, ∆Gexp values obtained in benzene-d6 also gave excellent correlations (unfilled 

circles in Figure 2a) with gas-phase calculated electrostatic potentials taken directly over the carbon atoms 

meta to the X- substituent of simple mono-substituted benzenes (ESPgas, left column in Figure 3, Table 1). In 

contrast, ∆Gexp values measured in chloroform-d showed significant scatter when plotted against the same 

ESPgas values (unfilled circles in Figure 2b). Similar, but less noticeable scattering was also seen in 

dichloromethane and carbon tetrachloride (Figure S11). Such scattering cannot be easily attributed to the 

dielectric effects of the solvent, nor the solvation of the common features of ESPs in which the implicit SM8 

solvation model was applied did not correct the scatter (ESPSM8)(Table 1, Figure S12). Closer examination of 

the scattering in Figure 2b (chloroform) shows that the X = H point was shifted to the left relative to the X = 

OMe and NEt2 points. Interestingly, “outlying behavior” of H-substituted rings has previously been reported 

in pKa studies where the solvation of substituents was implicated as playing a role.
21

 Thus, since chloroform is 

a reasonably good hydrogen-bond donor, and the OMe and NEt2 substituents are hydrogen bond acceptors 

(while H clearly is not), we reasoned that the scatter in our correlations might result from differences in the 

solvation of the variable X-substituents. 
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Figure 2. Experimental conformational free energies ∆Gexp measured in a) benzene-d6 and b) chloroform-d at 

298 K plotted against B3LYP/6-31G* electrostatic surface potentials taken meta to the substituent, ESP. The 

unfilled circles correspond to gas-phase calculations (ESPgas, left column in Figure 3), while the filled circles 

correspond to calculations where the substituent is solvated by a single explicit solvent molecule (ESPsolv x 1, 

center and right columns in Figure 3). The dotted lines correspond to ∆ESPmeta for each substituent (as used in 

Figure 4). Horizontal error bars correspond to standard deviation in the electrostatic potential readings taken 

over both meta positions on each side of the aromatic ring (see SI). The plots for dichloromethane and carbon 

tetrachloride are provided in the SI. Errors in ∆Gexp are estimated to be ±0.12 kJ mol
–1

 (see SI), and are 

omitted for the sake of clarity. All data are provided in Tables S1 and S2. Data for X = F corresponds to the 

hypothetical molecule where ∆Gexp = zero by virtue of its symmetry. 
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Figure 3. The effects of substituent solvation on electrostatic potential surfaces (ESPs) for a range of aromatic 

molecules calculated using B3LYP/6-31G*. Numbers indicate the ESP taken over the meta-position, ESPgas, 

or ESPsolv x 1. A version of this figure showing all solvents and substituents investigated is provided in the SI. 

 

 

Figure 4. Through-space electrostatic potentials eminating from the partial positive charge of the polar C-H 

bond in chloroform for a) an OMe-substituted phenyl ring and b) a pyridyl ring. The electrostatic potential 



Page 5 of 11 

field (ESPthrough-space) was calculated for chloroform in isolation (using B3LYP/6-31G*) and overlaid on the 

minimized structures shown in Figure 3. The electrostatic potential slices lie parallel to the plane of the 

aromatic ring and intersect the indicated meta positions on the 0.002 electron/Bohr
3 
isosurface. ∆ESPmeta = 

ESPsolv x 1 – ESPgas as represented by the dotted lines in Figure 2. Error bars represent the error standard 

deviation of electrostatic potential readings taken over both meta positions on each face of the aromatic ring. 

 

To test the hypothesis that substituent solvation might be significantly affecting the electrostatic potentials of 

the aromatic rings in our molecular balances, we performed the usual B3LYP/6-31G* ESP calculations, but 

the geometry optimizations were started with a single solvent molecule positioned near to the X-substituent. 

Solvent molecules were found to localize over the sites of the ESP minima seen in the unsolvated aromatics, 

which were located over the X-substituents in all cases (Figure 3). Furthermore, the electrostatic modulation 

of the adjacent aromatic rings was seen to be dependent on the solvent and identity of each substituent (Figure 

3). Strikingly, we found that plotting our experimental ∆Gexp values against the new ESPs (in which 

substituent solvation was explicitly modeled) decreased the scatter of the correlations for chloroform, 

dichloromethane, benzene and carbon tetrachloride (ESPsolv x 1 in Table 1, filled points in Figures 2 and S11). 

 

Property plotted    Correlation coefficients (R
2
)

 
of plots against ∆Gexp 

 CCl4 Benzene  DCM Chloroform 

Hammett constants    

p 0.866 0.949 0.877 0.853 

m 0.947 0.971 0.977 0.974 

Electrostatic potentials taken over positions meta to the substituent 

   ESPgas 0.985 0.976 0.968 0.958 

   ESPSM8 0.978 0.969 0.944 0.941 

   ESPsolv x 1 0.995 0.987 0.992 0.994 

   ESPgas +      

   ESPthrough-space 
n.d.

a
 0.975 0.990 0.990 

a
The through-space ESP was not determined for CCl4 due to the low polarity of this solvent. 

 

Table 1. Correlation coefficients of Gexp plotted against Hammett substituent constants and electrostatic 

potentials determined in the gas phase (ESPgas), using the implicit SM8 solvation model (ESPSM8), including a 

single explicit solvent molecule (ESPsolv x 1), and a single explicit solvent molecule where polarization effects 
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were neglected (ESPgas + ESPthrough-space). The corresponding graphs are shown in Figures 2, S6, S7, and S11-

S13. 

 

Indeed, the correlations improved to such an extent that the X = H points were no longer outliers relative to 

the X = OMe and NEt2 points. To further test this model we synthesized balance 9, which features a pyridyl 

nitrogen in place of the X-substituent (Figure 1). We reasoned that solvation of a strong hydrogen-bond 

acceptor that is directly bonded to the aromatic ring would give rise to even larger ESP deviations than those 

seen for other substituents. Gratifyingly, even though the ESP over the meta position changes by +30 kJ mol
–1

 

upon solvation with chloroform (Pyr in Figures 2-3), these data fit on the trend lines in all of the solvents 

examined (filled circles), whilst the unsolvated ESP data points (unfilled circles) are the largest outliers in the 

plots shown in Figures 2 and S11. Although the improvements in the correlation coefficients upon considering 

substituent solvation appear relatively modest (Table 1), the absolute changes in the ESPs are quite 

substantial; a 30 kJ mol
–1

 ESP change is equivalent to replacing an OMe substituent with a halogen substituent 

in the gas phase (Table S1, Figure S3). 

Figure 3 highlights another important effect of substituent solvation. It can be seen that ESPs taken over the 

rings when X = NO2 and X = CN change sign upon solvation, but still fit on the graphs shown in Figures 2 

and S11. Consistent with this ESP sign inversion, numerous experimental trends involving aromatic 

interactions have been seen to reverse upon the introduction of nitro substituents in chloroform solution, 

including influences on conformational equilibria,
35

 the stabilization of transition states,
36

 edge-to-face,
37-38

 

stacking,
39-40

 and cation-π interactions.
15

 

Overall, the range of substituents examined and the quality of the correlations shown in Figures 2 and S11, 

provides compelling evidence of notable electrostatic modulation of aromatic rings due to explicit solvation of 

substituents. Both through-space and polarization effects
13, 30, 41-44

 have been proposed to contribute to long-

range electrostatic effects, but it has also been shown that additive through-space models often serve as a 

reasonable approximation in some situations. Thus, we set about examining the utility of a simplified through-

space approach for modeling the long-range electrostatic effects of substituent solvation. 

Of the solvents examined, chloroform exerts the largest electrostatic changes when it solvates a particular 

substituent (Figure 3), and therefore provides the best opportunity for examining the utility of a through-space 

model. Figure 4 shows the electrostatic field originating from a single chloroform molecule in two examples 

of the minimized geometries shown in Figure 3. In accord with previous findings,
44

 the bar graphs in Figure 4 

show that through-space electrostatic effects are clearly significant, but only partially account for the change 

in the ESP of the aromatic ring upon substituent solvation (∆ESPmeta). The difference between ESPthrough-space 

and ∆ESPmeta is due to polarization effects not being taken into account in the through-space model. 

Nonetheless, the sum of ESPthrough-space + ESPgas correlated with experimental ∆G values better than ESPgas, 
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though not quite as well as ESPsolv x 1, which takes both through-space and polarization effects into account 

(Table 1 and Figure S13). 

In summary, high-quality correlations of experimental conformational free energies with calculated 

electrostatic potentials indicate that explicit solvation of substituents results in substantial modulation of the 

electrostatic potentials of aromatic rings. Our success in modeling the solvation of substituents with a single 

explicit solvent molecule may be attributed to three factors. Firstly, solvents have high molarities (from 10.3 

M for CCl4 to 15.6 M for CD2Cl2), which means that primary solvation sites will be highly occupied. 

Secondly, the primary modes of solvation are easily identified since the substituents and solvents examined 

here have clearly defined hydrogen-bond donor and acceptor sites. Finally, although the solvation of sites 

other than the substituents will undoubtedly influence the position of the conformational equilibrium, these 

effects only appear to influence the gradient of the ∆G correlations, but not the scatter seen in these plots. 

Combined, these favorable circumstances mean that it is possible to attribute the scatter seen the ∆Gexp 

correlations to the electronic effects arising from substituent solvation (which we show can be modeled using 

modest DFT calculations that include a single explicit solvent molecule). It is important to note that modeling 

entire systems featuring a Boltzmann distribution of multiple solvated states remains highly challenging, 

particularly when multiple solvent molecules are involved (See Table S1 in the SI). Despite this caveat, we 

also show that additive through-space electrostatic effects provide a reasonable account of our experimental 

data, which advocates the use of appropriately parameterized force-field methods for modeling these types of 

solvent effects with low computational cost. Thus, we hope that these results might contribute to the continued 

development of explicit,
8
 implicit (continuum),

45
 and hybrid solvation models.

46  
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