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Joint Registration and Fusion of an Infra-Red
Camera and Scanning Radar in a Maritime Context

David Cormack, Isabel Schlangen, Member, IEEE, James R. Hopgood, Member, IEEE
and Daniel E. Clark, Senior Member, IEEE

Abstract—The number of nodes in sensor networks is con-
tinually increasing, and maintaining accurate track estimates
inside their common surveillance region is a critical necessity.
Modern sensor platforms are likely to carry a range of different
sensor modalities, all providing data at differing rates, and with
varying degrees of uncertainty. These factors complicate the
fusion problem as multiple observation models are required,
along with a dynamic prediction model. However, the problem
is exacerbated when sensors are not registered correctly with
respect to each other, i.e. if they are subject to a static or
dynamic bias. In this case, measurements from different sensors
may correspond to the same target, but do not correlate with
each other when in the same Frame of Reference (FoR), which
decreases track accuracy. This paper presents a method to jointly
estimate the state of multiple targets in a surveillance region,
and to correctly register a radar and an Infrared Search and
Track (IRST) system onto the same FoR to perform sensor
fusion. Previous work using this type of parent-offspring process
has been successful when calibrating a pair of cameras, but
has never been attempted on a heterogeneous sensor network,
nor in a maritime environment. This article presents results on
both simulated scenarios and a segment of real data that show
a significant increase in track quality in comparison to using
incorrectly calibrated sensors or single-radar only.

Index Terms—Sensor fusion, registration, PHD filter, radar,
infrared, calibration, tracking, maritime

I. INTRODUCTION

A. State-of-the-Art and Problem Outline

W ITH many advances in sensor suites in recent years,

tracking targets from multiple aspects using a range of

different sensor modalities is now possible. Sensor fusion is

a mature and sophisticated technology that looks to automate

the process of combining a number of heterogeneous sources

of information. By combining these sources of different infor-

mation, the result should, in some sense, be better than what

would have been possible if the data from each sensor was

used individually [1], [2]. Maritime navigation radars typically
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take a number of seconds to perform a full sweep of the region

they are observing, whereas optical systems can potentially

have much faster update rates, making the measurements

asynchronous. By exploiting the high update rate and fusing

these image measurements with the radar, target tracks can be

updated and maintained more frequently [3].

The calibration of tracking systems [4] through estimation

of their model parameters is an important prerequisite before

such systems are deployed out in the field. In particular,

when fusing multiple sensor measurements, it is necessary

to consider sensor calibration or registration into the same

Frame of Reference (FoR). If, in the real world, the set of

sensors is incorrectly calibrated, any fusion in the multi-sensor

multi-target tracking algorithm could possibly lead to total

failure through loss of useful tracking information. Possible

calibration or registration errors could come from a number

of different sources. These could include incorrect calibration

during sensor manufacture, incorrect alignment during instal-

lation and setup, and potentially even uncontrollable factors

such as harsh weather, sensor drift (Global Positioning System

(GPS) drift or Inertial Measurement Unit (IMU) inaccuracies),

or misalignment through platform vibrations. Such drift might

possibly be dynamic, resulting in the need of repeated, time-

consuming re-calibration, or it could be impossible to calibrate

the system to a global frame altogether, e.g. in GPS-denied

environments. In such cases, it would be advantageous to

calibrate sensors relative to each other in an automatic manner

to avoid loss in track accuracy due to incorrect data fusion.

Previous work in the fusion of radar and optical imagery

data has been shown to be successful when tracking ma-

noeuvring targets [5] and also for the application of avian

monitoring [6]. In these articles, the registration problem is

either not accounted for, or is treated as a separate process

before fusion occurs. Methods for solving the sensor reg-

istration problem have been shown in [7]–[10] which use

pseudo-measurement approaches to estimate biases in sensor

networks, and in [11] which uses deep learning to deter-

mine appropriate registration parameters. Machine learning-

type methods require vast amounts of realistic training data in

order to give reliable results, furthermore these articles only

present results on datasets with biases around one order of

magnitude smaller than those treated in this article.

The joint method presented below is flexible and allows

for varying types of multiple target tracking algorithm to be

used, such as Joint Probabilistic Data Association (JPDA)

[12], [13], Multiple Hypothesis Tracking (MHT) [14], [15],

and Belief Propagation (BP) and message passing [16], [17].
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Fig. 1. An example of the sensor registration problem for a simple two-
dimensional case, using an IRST and a radar that are co-located. Both sensors
detect the target and give accurate measurements in their own FoR. However,
when the measurements are projected into a common FoR, a relative angular
bias φ is identified which needs to be accounted for during fusion.

For this work, the now commonly-used Probability Hypothesis

Density (PHD) filter [18]–[20] is implemented. The PHD filter

holds a number of advantages when dealing with multiple-

target distributions, such as a low computational cost, and

the ability to correctly estimate clutter and target populations

even with large variance in the number of objects. The low

computational cost is attractive in this defence application,

as time-critical decisions need to be taken often. Other more

expensive algorithms such as the Generalized Labelled Multi-

Bernoulli (GLMB) filter [21] may not operate quickly enough.

B. Proposed Method and Contributions

The solution outlined in this article is motivated by a specific

class of PHD filters that are based on hierarchical point process

models, called single-cluster filters [22]. In these filters, the

target population is regarded as a single group with one or
several common parameters which are hidden and have to be

estimated. In order to do so, the problem is modelled in two

inter-dependent layers: The high-level process, also called the

parent process, estimates the hidden parameter(s); and the low-

level process, also called the offspring process, estimates the

target states depending on those parameters.

Suitable models for sea clutter were identified to deal with

highly fluctuating numbers of sea spikes [23], which motivated

the usage of offspring processes with different false alarm

models. Therefore, two types of filter will be used in this work.

First, we consider the PHD filter [18], where the number of

targets and false alarms are assumed to be Poisson distributed

and only the first moment is propagated. Second, we consider

a recent development in this field, the Panjer PHD filter [24]

that can, by assuming the underlying distribution is Panjer,

propagate both the mean and variance of the process. Both

filters can be integrated in the single-cluster framework using

a filter-dependent multi-object likelihood (MOL) [22], [25]

which serves as a quality measure for the estimation provided

by the parent process.

The single-cluster method has been successfully applied to

Simultaneous Localisation and Mapping (SLAM) problems

[26], sensor calibration [4], [27] and sensor drift estimation

[28], [29], but to our knowledge, this is the first article

that addresses the registration problem in a heterogeneous

sensor network within a defence or surveillance context. More

specifically, this work presents a method for estimating and

tracking multiple targets from a maritime radar and an Infrared

Search and Track (IRST) system like those in Fig. 3, while

jointly registering the sensors onto the same FoR for fusion.

Here, the FoR can be chosen arbitrarily and it will be shown

that the relative bias is estimated correctly irrespective of

that choice. One possibility is to assume that one sensor is

perfectly calibrated onto the WGS84 coordinate system and

a second, colocated sensor shows an angular displacement as

shown in Fig. 1. In fact, by estimating the relative (angular

or translational) displacement between sensors, fusion can be

successfully performed even if the calibration onto a world

FoR is impossible, e.g. in GPS-denied environments.

The contributions of this paper include:

1) a multi-target tracking (MTT) technique that incorpo-

rates sensor calibration in a joint manner, in contrast to

existing techniques which solve tracking and calibration

separately by using pseudo-measurements [7]–[10]; the

proposed technique also avoids the computationally ex-

pensive data association problem found in some joint

fusion and registration approaches, such as [30];

2) a new predictive model for tracking changes in the

dynamic sensor configuration which is included in the

parent process computations (Sec. II-A); it also incorpo-

rates non-uniform sampling information to overcome the

asynchronous aspect of the sensor network (Sec. II-B);

3) non-linear observation models respecting the MTT out-

put states being given in Cartesian coordinates and

measurements in polar coordinates; therefore, imple-

mentations of two multi-object estimation algorithms

are introduced in this paper to solve the non-linear

fusion problem, including a novel Extended Kalman

Filter (EKF) version of the Panjer filter (Sec. II-B);

4) a comprehensive set of simulations (Sec. III-D), in-

volving a typically challenging tracking scenario where

target trajectories cross one another; moreover, the sim-

ulations shown in this article consider a much larger

angular offset, by an order of magnitude, compared to

those simulated in [8], [31].

C. Paper Organization

The remainder of this paper is organized as follows: Sec. II

gives an overview of the joint estimation problem, with

modelling and implementation information given in Sec. III;

results are shown in Sec. IV and conclusions are drawn in

Sec. V.

II. MULTIPLE TARGET TRACKING AND FUSION

The main challenge in this work is that the offset angle

between the radar and the IRST system, φ, is unknown and

must be estimated recursively along with the target states based
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Fig. 2. Flowchart of the joint registration and fusion process. Asynchronous
measurements are sent to the buffer when ready, and then used in the offspring
layer for tracking. When IRST measurements are received, the MOL �̂ik =

�̂k(φ
i
k|Zk) is calculated to update the sensor registration parameter(s).

on imperfect data. For example, consider the scenario shown

in Fig. 1 where a slow moving maritime target follows the

trajectory shown in the dark thick line. Both sensors generate

accurate measurements in their own FoR; the registration error

is only apparent once the measurements are projected onto

a common FoR such as WGS84. The radar produces range-

azimuth measurements represented by the crosses which are

assumed to be close to the true target trajectory.1 However,

the azimuth-only IRST measurements shown as the light

lines radiating from the origin contain a systematic angular

offset, φ, that is to be estimated in order to perform accurate

sensor fusion. The following sections will provide detailed

information on the work flow presented in Fig. 2.

A. Parent Process: Sensor Registration

The parent process is responsible for estimating the poten-

tially time-varying sensor registration angle, φ, in order to

project the measurements of one sensor into the FoR of the

other sensor for fusion purposes. The densities involved in the

parent process are denoted with ·̂ for the rest of this article.

A Bayes recursion is used to propagate the posterior density,

P̂k(φ), for the calibration angle:

P̂k|k−1(φ) =

∫
f̂k|k−1(φ|φ′)P̂k−1(φ

′)dφ′, (1a)

P̂k(φ|Zk) =
�̂k(φ|Zk)P̂k|k−1(φ)∫

�̂k(φ′|Zk)P̂k|k−1(φ′)dφ′ (1b)

where �̂k(φ|Zk) is a multi-object likelihood (MOL) function,

and f̂k|k−1(φ|φ′) is the transition density. Note that the

1In Fig. 1, the world FoR in which the ground truth is assumed to be located
coincides with the radar’s FoR.

MOL, or registration parameter likelihood, is different from

a multitarget association likelihood like the one used in the

offspring process below as it describes the plausibility of a

given sensor registration parameterisation φ based on a set of

measurements Zk; more details can be found in [4], [26]. The

multi-object/multi-measurement association likelihood, on the

other hand, measures the association of the target states given

the sensor measurements.

Using a particle filter approach, the registration parameter

to be estimated at time-step k is represented with a particle

distribution φi
k for 1 ≤ i ≤ N , where each i represents a

different sensor geometry. Each particle has a corresponding

weight wi
k and an underlying set of multi-target estimation

statistics θik that are dependent on the offspring process.

The particle weight wi
k essentially encapsulates the belief

that registration parameter φi
k best represents the true sensor

calibration. With the particles fixed to a grid, the particle

weights can be computed using grid-based methods [32, p. 9].

Using this method, the recursion for predicting and updating

the parent process weights is

wi
k|k−1 =

N∑
j=1

wj
k−1f̂k|k−1

(
φi
k|φj

k

)
(2a)

wi
k =

wi
k|k−1�̂k(φ

i
k|Zk)∑N

j=1 w
j
k|k−1�̂k(φ

j
k|Zk)

(2b)

where f̂k|k−1

(
φi
k|φj

k

)
= f̂ i−j

k|k−1 is a discrete density over

the difference in angle-indices and �̂k(φ
i
k|Zk) is the MOL

function evaluated for a given sensor geometry at φi
k. Equation

(2a) can be written as the convolution of weights wj
k−1 and

a kernel f̂ i−j
k|k−1. The transition is modelled as a perturbation

with a discretised wrapped Gaussian distribution. This is ap-

proximated using a finite-support shifted binomial distribution

where u ∼ B(n, p) and i = j + u − n/2 is the relationship

between the predicted angle-index, i, and the particle angle-

index, j. Heuristically, the values n = 6, p = 0.5 are

used, such that Equation (2a) can in practice be calculated

as the convolution of wk−1 and the kernel B(6, 0.5) =
{0.0156; 0.0938; 0.2344; 0.3125; 0.2344; 0.0938; 0.0156}. The

parent process is initialized with a flat prior distribution, where

all sensor geometries are equally likely.

The information contained inside θik at time-step k is depen-

dent on the type of offspring filter that is chosen, i.e. it either

just contains the intensity, μk, of the multi-target distribution

in case of the PHD filter, or both μk and the variance vark in

case of the Panjer filter. The filters and their respective MOL

functions are described below.

B. Offspring Process: Sensor Fusion

Let X and Z denote the state and measurement spaces,

respectively. The offspring process estimates the time-varying

multi-object state with nk targets, ψ ∈ Xnk , dependent on

a certain sensor configuration φ. This process is assumed to

evolve with a Markov transition function fk|k−1(ψ|ψ′) which

in this case will follow the near constant velocity (NCV)

motion model [33], with a dynamic value for state transition
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Fig. 3. Sensor setup for collecting real data with the IRST system in the
foreground and radar in the background. © Crown copyright, 2019.

time Δk. This dynamic value is calculated at the measure-

ment buffer stage as shown in Fig. 2, using the equation

Δk = tk − tk−1 where tk is the known current measurement

time, and tk−1 is the previous measurement time. The multi-

measurement/multi-target likelihood lk(ψ|φ, Zk) describes the

association likelihood of targets and measurements. The fol-

lowing Bayes recursion is used to propagate the law Pk of the

target process at time k:

Pk|k−1(ψ|φ) =
∫

fk|k−1(ψ|ψ′)Pk−1(ψ
′|φ)dψ′ (3a)

Pk(ψ|φ, Zk) =
lk(ψ|φ, Zk)Pk|k−1(ψ|φ)∫

lk(ψ′|φ, Zk)Pk|k−1(ψ′|φ)dψ′ (3b)

For this work, the offspring process will be fulfilled using

either the original PHD or the Panjer PHD filter as described

below, and concrete model choices are described in Sec. III-B.

When a measurement arrives from the reference sensor, θik are

updated for all i = 1, . . . , N , and when a measurement arrives

from an uncalibrated sensor, both θik and the registration

parameter weights wi
k in (2b) are updated using the MOL

in Eqns (9) or (13), respectively.

1) PHD Filter: The PHD filter is now a mature method of

performing multi-target tracking. It was first developed in 2003

[18], [19] and the common Gaussian mixture implementation

was introduced in 2006 [20]. A full derivation of the filter can

be found in [18], [20]. This first-order filter propagates only

the mean μk of the point process and assumes the predicted

number of targets and false alarms are both Poisson distributed

[25]. The implementation used in this work can be found in

[20, Table IV].

2) Panjer PHD Filter: The Panjer PHD filter was first

introduced in [24] as a useful extension to the first-order PHD

filter defined earlier. This process propagates both the mean

and variance of the point process, using the assumption that

the number of predicted targets and the false alarms are Panjer

distributed. The Panjer distribution is characterised by two

parameters α and β which closely correspond to its mean and

variance.

Case 1: 0 < {α, β} ∈ R
+ × R

+: Represents a negative

binomial distribution, where the variance is greater than the

mean. This would be useful, for example, in situations where

there may be sudden large influxes of measurements such as

strong returns on a rough sea.
Case 2: 0 > {α, β} ∈ Z

− × R
−: Represents a binomial

distribution where the variance is less than the mean. This

could be used in a situation where a very consistent number

of false alarms is expected, e.g. a static or slow-changing

environment.
Case 3: {α, β} → ∞: The limit case where the ratio

stays constant, resulting in the Poisson distribution. This

represents the standard false alarm model used in many pieces

of target tracking literature.

Having these three different cases available gives more

flexibility in modelling the number of targets and false alarms.

A full mathematical derivation and pseudo-code is available

elsewhere [24], and is omitted here.
3) Extended Kalman Filter PHD and Panjer filters: An

EKF version of both offspring filters is required to overcome

the non-linearity between the Cartesian state space and the Po-

lar observation space. EKFs use a Jacobian matrix to linearize

the non-linear function around the current state estimate. This

Jacobian is found by performing partial differentiation of the

observation model equations with respect to the variables in

the state vector, such that the elements of the matrix are

Jpq =
∂hp

∂Xq
, p ∈ {r, φ}, q ∈ {1, . . . , 4} (4)

where hp is the conventional Cartesian to Polar transformation

hr = r =
√

x2 + y2, hφ = φ = tan−1 (x, y) ,

and where tan−1 (x, y) is the four-quadrant inverse tangent

function and X = [x, ẋ, y, ẏ]
T

. During an offspring update

with radar measurements, the Jacobian matrix used is

JR =

[
x√

x2+y2
0 y√

x2+y2
0

−y
x2+y2 0 x

x2+y2 0

]
(5)

and for an IRST update, the Jacobian becomes

JI =
[

−y
x2+y2 0 x

x2+y2 0
]
. (6)

C. The multi-object likelihood functions

In this section, the PHD and the Panjer version of the MOL

are revisited, and a short version of their derivations is given

in a supplementary document. More detailed explanations are

found in [22] and [34]. Note that we will omit an implicit time

index k in all notations for the sake of brevity.
1) Notations: In the following, all equations referring to

the PHD filter or Poisson distributed phenomena are marked

with the symbol • and any reference to the Panjer filter

or the Panjer distribution is indicated with the symbol ◦.

Dependent on the sensor configuration φ, we can write down

the spatial distribution of the false alarms as sc(·|φ). Further-

more, suppose that μ
•/◦
pr (·|φ) is the predicted intensity of the

PHD or Panjer filter, l(x|z) denotes the single-target single-

measurement association likelihood, and pd(·|φ) is the (state-

dependent) probability of target detection. For arbitrary regions

B ⊆ X , the association terms μ
•/◦
z (·|φ) are given by

μ•/◦
z (B|φ) =

∫
B

pd(x)l(x|z)μ•/◦
pr (x)dx. (7)
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2) The PHD filter likelihood [22]: For the original PHD

filter, the number of false alarms is assumed to be Poisson

distributed, in which case λ•
c shall denote the Poisson false

alarm rate and μ•
c(·|φ) = λ•

cs
•
c(·|φ) is its intensity function

(cf. Eq. (28) in the supplementary document).

Theorem II.1 (MOL of the PHD filter [22]). Given the short-
hand notation

μ•
d(X ) =

∫
X
pd(x|φ)μ•

pr(x|φ)dx, (8)

the likelihood function of the PHD filter for a given sensor
state φ is found to be

�̂•(φ|Z) =

∏
z∈Z [μ•

c(z|φ) + μ•
z(X|φ)]

exp
[∫

Z μ•
c(z|φ)dz + μ•

d(X )
]. (9)

3) The Panjer filter likelihood [25], [34]: Let us define the

Pochhammer symbol or rising factorial xn↑ by

xn↑ :=

n−1∏
i=0

(x+ i), x0↑ := 1. (10)

As the name suggests, the Panjer filter assumes Panjer dis-

tributed false alarms, in which case we write αc, βc for the

two Panjer clutter parameters and s◦c for the spatial distribution

of the false alarms.

Theorem II.2 (MOL of the Panjer PHD filter). Write α = αpr,
β = βpr and s◦pr for the Panjer parameters and the spatial
distribution of the predicted process, and let

Fd,φ = 1 +
1

β

∫
X
pd(x|φ)s◦pr(x|φ)dx, (11)

Fc = 1 +
1

βc
(12)

be two auxiliary functions for a given sensor state φ. The
multi-object likelihood function of the Panjer PHD filter for φ
is found to be

�̂◦(φ|Z) =

|Z|∑
j=0

αj↑
βj

(αc)(|Z|−j)↑
(βc + 1)|Z|−j

F−α−j
d,φ F−αc−|Z|−j

c

·
∑
Z′⊆Z
|Z′|=j

∏
z∈Z′

μ◦
z(X|φ)

∏
z′∈Z\Z′

s◦c(z|φ).
(13)

III. MODELLING, DATA, AND SCENARIOS

A. Implementation

Much like the parent process in [35], the parent process in

this application is represented with a one-dimensional even

spread of particles. In this case, particles are distributed on

a fixed grid between angles ±10° from the centre of the

field of view. The number of particles N has been chosen

to be 201 such that the angular resolution is 0.1° between

consecutive filters. With this even spread of particles, and

a consistent test between ±10°, there is no need for a

particle resampling step [36] in this algorithm, reducing the

computational effort required. In this work we only consider

estimating one parameter, however several parameters could

be estimated simultaneously if necessary at the cost of using

Algorithm 1 Joint Sensor Registration and Fusion

Input: Set of particles {φi
k−1, w

i
k−1, θ

i
k−1}Ni=1

Set of measurements Zk

procedure PREDICTION

for 1 ≤ i ≤ N do
wi

k|k−1 = ParentPrediction(wi
k−1) 
 Eq. (2a)

θik|k−1 = OffspringPrediction(θik−1) 
 Eq. (3a)

end for
end procedure

procedure UPDATE

for 1 ≤ i ≤ N do
if Zk from reference sensor then

θik = OffspringUpdate(θik|k−1, Zk) 
 Eq. (3b)

wi
k = wi

k|k−1

else if Zk from uncalibrated sensor then
θik = OffspringUpdate(θik|k−1, Zk) 
 Eq. (3b)

wi
k = ParentUpdate(θik|k−1, w

i
k|k−1) 
 Eq. (2b)

end if
end for

end procedure

Output: Set of particles {φi
k, w

i
k, θ

i
k}Ni=1

more particles. A high-level pseudocode for this solution is

given in Algorithm 1.

Both offspring processes are implemented using a Gaussian-

Mixture representation of the target population like in [20],

[24], but using an EKF as described earlier. A measurement-

driven birth process will be used as described in [37], and

the Hellinger distance is used for component merging [38];

components with low weights below a threshold τprune are

removed at every update.

B. Model Definitions

1) Dynamical Model: The measurement buffer will have

access to the raw range-bearing radar measurements and the

bearing-only IRST measurements that are recorded at a given

iteration k and physical time tk. The MTT routine will be

performed using a 4−D Cartesian state vector with elements

xk = [xk ẋk yk ẏk]
′

(14)

where xk, yk are the x and y positions of a target, and ẋk, ẏk
are the x and y velocities of a target. For this maritime

surveillance-based scenario, it is assumed that each and every

target follows a near-constant velocity (NCV) model [39], [40]

that is described by

xk = Fkxk−1 + wk (15)

where Fk is the state transition matrix

Fk =

⎡
⎢⎢⎣
1 Δk 0 0
0 1 0 0
0 0 1 Δk

0 0 0 1

⎤
⎥⎥⎦ , Δk = tk − tk−1, (16)
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and wk represents zero-mean white Gaussian process noise

with covariance

Qk =

⎡
⎢⎢⎣
qΔ3

k/3 qΔ2
k/2 0 0

qΔ2
k/2 qΔk 0 0
0 0 qΔ3

k/3 qΔ2
k/2

0 0 qΔ2
k/2 qΔk

⎤
⎥⎥⎦ (17)

and q is the acceleration noise value in both the X and Y
directions.

2) Measurement Models: The radar measurement model is

defined as

zRk = hR(xk) + ηRk , (18)

with

hR(xk) =

[
rk
φk

]
=

[ √
x2
k + y2k

tan−1(xk, yk)

]
, (19)

where rk > 0, tan−1(xk, yk) is the four-quadrant inverse

tangent function, and the resulting φk lies within [0, 2π). The

additive noise term ηRk is defined by

ηRk ∼ N (ηRk ; 0, diag(σ2
rr , σ

2
φr
)) (20)

where σrr and σφr are the radar’s range and azimuth standard

deviations respectively.

The camera measurement model is described by

zCk = hC(xk) + ηCk , (21)

where

hC(xk) = φk = tan−1(xk, yk). (22)

The additive noise term ηCk is defined by

ηCk ∼ N (ηCk ; 0, σ2
φc
) (23)

where σφc
is the camera azimuth standard deviation.

C. Sensors

The maritime navigation radar used as a part of the data

collection was a Kelvin Hughes SharpEye system [41], shown

in the background of Fig. 3. It uses a number of different

radar techniques to detect a wide-range of targets in a maritime

environment. During the trial, the system was operating in a

full 360◦ sweep mode, with a full scan taking approximately

2.5 seconds to complete. The low-profile antenna gives an

azimuthal beam-width of less than 1° at the 3 dB point.

Techniques such as monopulse to further improve the angular

accuracy of the radar were not in use; accurate target locali-

sation inside the beam was not possible.

The IRST system, shown in the foreground of Fig. 3, was a

research platform which limited the amount of information

available. IRST is one method for detecting and tracking

targets that give off infra-red signatures. The wavelength of

this sensor tends to be shorter than that of a conventional mar-

itime radar, thus giving much better angular resolution. One

drawback however is that it can be affected by atmospheric

conditions and the weather, both shortening its effective range.

The reasons for performing sensor fusion in this case are to

exploit the better angular accuracy in the IRST measurements

and the higher update rate available from the IRST sensor.
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Fig. 4. Trajectories used in simulated scenario, with sensors co-located at the
origin (0, 0).

D. Simulations

In order to test the algorithm using simulated data, a

challenging scenario involving crossing target trajectories has

been created. Two targets move around inside the IRST field-

of-view and their trajectories cross around 60 iterations into

the scenario. Crossing targets often make the data association

problem difficult for tracking algorithms; a sensor with a

slow update rate will not generate estimates quickly enough,

and therefore there will be a loss in track resolution. Sensor

properties and update rates are close to those defined in the

accompanying data sheets and manuals [41].

In this first scenario, we consider two potential false alarm

models for a maritime tracking scenario; the common Poisson

model, and also a negative binomial model [42]. The latter

will allow for a large variance in the number of false alarms

generated from crests of waves or from rough sea conditions

[23]. Simulations have been created to test the filters on each of

those models. The parameters used for the simulations and the

filters are shown in Table I and are typical for multiple target

tracking simulations using PHD filters [20], [24]; any variation

in parameters for different experiments will be stated later. For

the first two experiments (Sec. IV-A and IV-B) where the IRST

is calibrated onto the radar FoR, a misalignment of 3° has been

simulated in the IRST measurements. Due to the different

characteristics and sampling rates of radar and an infrared

sensor, a third simulated scenario is considered (Sec. IV-C)

where the radar measurements contain an angular bias and the

IRST measurements have no bias. This alternative scenario

will show that it is possible to still estimate this angular

bias, even when exploiting the infrequent radar measurements,

rather than the high-frequency IRST measurements.

E. Real Scenario

In order to further test the algorithm developed, a short

segment of data from a real scenario was used. Both sensors

were located on a sea wall at Fort Blockhouse in Gosport

overlooking Portsmouth harbour. The trial coordinators had

instructed a number of instrumented targets to be present dur-

ing the trial. However, there was a large amount of background
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TABLE I
TRACKING PARAMETERS

Quantity Symbol Sim Value Real Value

Detection Probability pd 0.99 0.6

Survival Probability ps 0.95 0.95

Pruning Threshold τprune 0.001 0.001

Merging Threshold τmerge 0.8 0.6

Extraction Threshold τextract 0.5 0.5

False Alarm Rates λr , λc 2, 5 5, 10

False Alarm Variance varr , varc 10, 50 N/A

Birth Intensity μb 1 0.01

Acceleration Noise (ms−2) q 1 3

Radar Meas. Noise (m, deg) σrr , σφr 5, 0.06 3.873, 0.059

IRST Meas. Noise (deg) σφc 0.01 0.016

traffic such as ferries and cargo vessels passing through, which

is actually an advantage: having more targets present in the

scene is preferable when attempting to calibrate using this

method as more measurement-to-track associations can be

made, and therefore increase the MOL.

In the segment of real data used, a target crosses the field

of view at approximately 2 kilometres away from the sensors.

The segment lasts for approximately 50 seconds and then the

target disappears from view. For the sensor fusion aspect, a

subset of the IRST measurement sets are used to improve the

update rate, but not so much as to heavily rely on bearings-

only track updates; a typically challenging problem in MTT.

Approximately three sets of IRST measurements are used

between consecutive radar scans.

IV. RESULTS

All results have been averaged over 50 Monte Carlo runs,

and the registration angle estimate is taken as the Maximum

A Posteriori (MAP) estimate of the parent likelihood function.

The tracked output from the PHD filter and Panjer PHD

filter will be compared to the simulated trajectories using the

Optimal Subpattern Assignment (OSPA) distance [43]. The

OSPA distance is a combination of a cardinality error and a

localisation error between two sets X and Y with cardinalities2

m and n, which is widely used to determine accuracy in multi-

target tracking systems. It is given by [43, Eq. (3)]

d(c)p (X,Y ) =

[
min
π∈Πn

m∑
i=1

d(c)(xi, yπ(i))
p + cp(n−m)

] 1
p

,

(24)

using an order parameter p and a cut-off distance c. Here,

the distance function d(c)(x, y) = min(c, d(x, y)) is an ap-

propriate distance measure, e.g. the Euclidean distance, cut

off at c, and Πn denotes the set of all possible permutations

of the numbers 1, . . . , n. As the order parameter increases,

the metric penalises estimates that lie further away from the

ground truth more harshly. From [43, Sec. III-D], p = 2 is

a good practical choice for the order parameter, as it usually

gives smoother distance curves, and is consistent with other

2Without loss of generality, it is assumed that X has at most as many
elements as Y .
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Fig. 5. OSPA Distance over Time, PHD Filter, Poisson Distribution

metrics that use a p-th order average construction. The cut-

off distance c determines the trade-off between penalising

cardinality errors as opposed to localisation errors. For all

OSPA results shown, a cut-off parameter of c = 100 m and

order parameter p = 2 will be used.

In Figs. 5 through to 9, where the OSPA distance and IRST

pointing angle are plotted, these are the averages taken across

all Monte-Carlo trials. We use a consistent target ground truth

in all trials and use this to generate a different set of sensor

measurements for each individual trial. The legend shown in

Fig. 5a is consistent across Figs. 5, 6, 7, and 10a. The red

dashed plots represent the case where only the radar is used

and no data fusion is performed. The blue dotted plots show

the case where the radar and IRST are incorrectly registered

and no correction attempt is made, whereas the dashed-dotted

black plots show the results for the joint estimation method

presented in this work. Finally, as a benchmark to compare

our result to, we have also simulated the case where the radar

and IRST are perfectly registered, giving an optimal result.

This is shown as the solid green plot on each figure.

A. Poisson Distribution

We start by considering the Poisson distribution as the

underlying false alarm model. Here, the mean number of

false alarms is equal to the variance, giving a reasonably

consistent number per scan. The average false alarm rates for

each sensor are shown in Table I. From Figs. 5 and 6, the

importance of having the correct registration between sensors

is clear. Performing tracking with only radar measurements
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is accurate in itself, however the tracking accuracy can be

improved by performing sensor fusion between a radar and

a calibrated IRST sensor. Without taking the registration into

account, and performing fusion with an IRST sensor that is

uncalibrated, tracking performance is decreased and the OSPA

distance increases significantly. Comparing Fig. 5a to Fig. 6a,

and Fig. 5b to Fig. 6b there is an improvement in tracking

performance by using the Panjer PHD filter. In the pd = 0.99
case, the k = 95 OSPA distances for the PHD filter and

Panjer PHD filters with estimated registration are 21.72m
and 20.04m respectively, and in the pd = 0.85 case, these

are 32.56m and 30.72m. This is due to propagation of the

variance of the cardinality distribution, as well as the mean.

As with many tracking scenarios, the probability of detec-

tion pd is an important factor and as shown in Figs. 8a and

9a, performance improves in both the target tracking and the

registration estimation as pd increases from 0.7 to 0.99.

B. Negative Binomial Distribution

For this set of simulations, the variance in the number of

false alarms is no longer constrained to be equal to the mean.

The included variance parameters are shown in Table I. The

PHD filter assumes the false alarm distribution is Poisson,

and does not take account of the variance information. The

Panjer PHD filter however allows for variance information to

be included. It can be seen in Fig. 7 that the Panjer PHD

filter does outperform the PHD filter in all cases. At k =
95 in the estimated registration case, the OSPA distance for
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Fig. 7. OSPA Distance over Time, Negative Binomial Distribution

the PHD filter is 35.71m, whereas for the Panjer PHD filter,

this is 30.61m. Again these results show it is important to

take account of the registration between the sensors. A larger

performance gain can be seen in Fig. 9. We see that even with

lower values of pd (e.g. 0.7), the Panjer PHD filter is able

to give more consistent and accurate estimates of the IRST

pointing angle. We require a higher pd value (> 0.9) to get

accurate registration estimates from the PHD filter.

C. Alternative Frame of Reference

We now consider the alternative representation of the sen-

sors, where instead, the radar measurements are assumed

to contain some angular bias and the IRST measurements

contain no bias. Firstly in Fig. 10a, it can be seen that the

tracking accuracy using a single radar has now decreased as

expected, and the result where fusion is performed between

the unregistered sensors is still poor. The estimated result is

close to the unbiased and correctly registered result, with an

OSPA distance at k = 95 of 27.04m. In Figs. 10b and 10c, as

the probability of detection pd increases, there is a decrease

in the OSPA distance, and the angle estimate tends towards

the true registration configuration, following the same trends

as the results given in Figs. 8a and 9a.

D. Real Scenario

Fig. 11 shows that after the initialisation to 10° and a

transition period, a 1.5° to 2° registration error is estimated
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between the radar and the IRST system. After the transition,

it can be seen that the angle only deviates from this a small

amount, which could be due to some platform vibration, or

gusts of wind for example. This error could account for the

fact that the installation was done only by eye and therefore

subject to human error. The advantage of performing sensor

fusion is apparent in the comparison in Fig. 12. The radar track

shown in Fig. 12a is accurate, however there are considerable

gaps between consecutive estimates. These gaps are filled

using fusion of the IRST information, see Fig. 12b. With

range information only available in the radar measurements,

we see the two larger ”jumps” in the track at (−2000, 400)
and (−1850, 450). These are points where radar measurements

become available again and range information can be updated.

V. CONCLUSIONS

We have successfully demonstrated a suitable method for

performing joint sensor registration and fusion using asyn-

chronous and heterogeneous sensors. The registration param-

eter is estimated on the fly, based on the performance of the

underlying target tracker, which has never been performed in

this context before. The simulation results on a challenging

scenario clearly highlight the importance of calibrating the net-

work before performing fusion across the sensors, even when

using an alternative false alarm model. When applying this

method to a real data set, a plausible offset angle was found.

For this sensor setup of radar and IRST, the well-documented

bearings-only tracking problem was evident when using IRST

measurements. By not having a range measurement available,

tracking accuracy is reduced. This was compensated for by

using only a subset of the IRST images available, giving more

weight to the sparse range-bearing measurements of the radar.

Taking into consideration the simulated scenario outlined

in this work, it is of vital importance that sensor fusion is

used. Using only the slow update rate of the radar system will

leave longer periods where no track estimates are given, and

therefore track resolution is lost. Exploiting the higher update

rate of the IRST system majorly improves the performance

where the calibration is accurate, especially at the point where

the targets cross. Having more track estimates gives better

situational awareness, and helps to resolve potential issues

with estimate-to-track association.
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I. MOTIVATION

The MOLs of the PHD and Panjer filter (Eq. (9) and

(13)) can be proved with the mathematical framework of

point processes, which is a general form of the Finite Set

Statistics (FISST) developed by Mahler [19]. In Sec. II,

we will introduce some mathematical tools that will be

necessary to conduct the proofs in Sec. III.

II. A SHORT INTRODUCTION TO POINT PROCESSES

A. Probability Generating Functionals
A useful stochastic concept to describe populations of

objects is the notion of a point process Φ on X , which

is a random variable on the space X =
⋃

n≥0 Xn of

finite sequences in X . A realisation of Φ is a sequence1

ϕ = (x1, . . . , xn) ∈ Xn, where both the number n ∈ N

and the states xi ∈ X of the objects are random. Each

point process Φ can be characterised by its Probability

Generating Functional (PGFL)

GΦ(h) =
∑
n≥0

∫ [
n∏

i=1

h(xi)

]
P

(n)
Φ (x1 . . . xn)dx1 . . . dxn,

(15)

where the P
(n)
Φ are permutation-invariant probability mea-

sures on Xn for all n ≥ 0, and h is a real-valued function.

This type of functional is a useful mathematical represen-

tation of a point process since it makes it possible to model

the number of objects on the one hand (via considering all

cardinalities n in the sum) and their stochastic properties

on the other (via the probabilities P
(n)
Φ for every fixed n).

Let us look at a few common examples of PGFLs which

will also be used later on.
The most simple PGFL is that of a Bernoulli process

with parameter p� and spatial distribution s� given by

G�(h) = (1− p�) + p�

∫
h(x)s�(x)dx. (16)

This process is a suitable choice for modelling survival

and detection processes since those can have only two

outcomes; either, the object dies (or gets miss-detected)

with probability (1 − p�), or it survives (or is detected)

with probability p�, in which case it evolves according to

the spatial distribution s�(·).
The PGFL of a Poisson point process with parameter

λ• and intensity μ•(·) = λ•s•(·) is of the form [44]

G•(h) = exp

(∫
[h(x)− 1]μ•(x)dx

)
. (17)

1If instead of sequences, one assumes that realisations of Φ are finite
sets, we arrive at the Random Finite Set (RFS) theory derived by Mahler
[19]. Sets do not allow state repetitions by definition, whereas sequences
generally do.

This compact form is found by inserting the probability

mass function of a Poisson distribution in Eq. (15) and

using the series expansion of the exponential function to

remove the infinite sum. The Poisson point process gained

its popularity from the fact that while describing common

phenomena in many applications, it only depends on one

parameter and its exponential form makes it easy to work

with.

A less known concept is that of the Panjer distribution,

which is common in actuarial mathematics but only made

its way to the engineering community very recently. The

PGFL of a Panjer point process with spatial distribution

s◦ and parameters α◦, β◦ is found to be [44], [34]

G◦(h) =
(
1 +

1

β◦

∫
[1− h(x)]s◦(x)dx

)−α◦

. (18)

One can show that by taking the limit α → ∞ while

keeping the ratio α
β constant, the PGFL (18) reduces to

that of the Poisson process (17). Furthermore, a binomial

(or negative binomial) process is obtained by choosing

negative (or positive) values for both α and β, which

makes this formulation versatile and useful in cases where

the Poisson assumption is too restrictive.

B. PGFLs and functional differentiation

Many properties of a point process are encoded in its

statistical moments, which are obtained via differentiation

of its PGFL. Two particularly important and useful prop-

erties are:

• Calculating the expected value [47]:

E[GΦ] = δGΦ(h; η)|h=1 (19)

• Extracting the probability measure of having exactly

n objects:

P
(n)
Φ (x1, . . . , xn) = δnGΦ(h; δx1

, . . . , δxn
)|h=0,

(20)

where δx denotes the Dirac delta function, being

nonzero at x only.

The derivation of the MOL heavily relies on Eq. (20)

since we want to express the likelihood of having exactly

m measurements z1, . . . , zm, given the current state of the

system. The filter equations of the Probability Hypothesis

Density (PHD) filter and its variations propagate the

expected value which is found via the rule (19). For the

purpose of computing explicit formulae for the Multi-

Object Likelihood (MOL) functions, let us first write down

the so-called chain differential which admits a higher order

product and chain rule [46]; other common differential

operators are the Gâteaux and Fréchet differential [45].



Definition II.1 (Chain differential [45], [46]). Let (ηn :
X → R

+)n∈N be a sequence of positive, bounded func-
tions converging pointwise to a function η : X → R

+,
and let (εn)n∈N be a sequence of positive real values
converging to 0. The chain differential of a functional G
with respect to its functional argument h : X → R

+ in
the direction of η is defined as

δG(h; η) = lim
n→∞

G(h+ εnηn)−G(h)

εn
. (21)

If the limit exists, it is unique for any sequence (εn)n∈N

and (ηn : X → R
+)n∈N with the above properties.

The chain differential yields an n-fold product rule [44]

δn(F ·G)(h; η1, . . . , ηn)

=
∑

ω⊆{1,...,n}
δ|ω|F

(
h; (ηi)i∈ω

)
δ|ω̄|G

(
h; (ηj)j∈ω̄

)
, (22)

with ω̄ being the set complement {1, . . . , n} \ ω, and an

n-fold chain rule2 [46]

δn(F ◦G)(h; η1, . . . , ηn)

=
∑
π∈Πn

δ|π|F
(
G(h);

(
δ|ω|G(h; (ηi)i∈ω)

)
ω∈π

)
.

(23)

C. Concatenation of point processes

Of course, most problems in Bayesian filtering cannot

be described by one single point process only since

several processes are involved in both the prediction

and the update. Joint PGFLs can be written down in

analogy to (15) but involving joint probabilities of the

form P
(n,m)
Φ (x1 . . . xn, z1, . . . , zm). In general, these do

not simplify, however we will be interested in two special

cases, namely superposition and branching.

1) Superposition: If two processes are independent,

their joint PGFL decomposes into a product of the

form

GΦ,Ψ(h, g) = GΦ(h)GΨ(g). (24)

This is used, for example, for superimposing spon-

taneous clutter which is assumed to be independent

of the target process.

2) Branching: If each point in process Φ creates a new

process Ψ, its resulting PGFL is the concatenation

of the individual functionals:

GΦ,Ψ(h, g) = GΦ(h GΨ(g|·)). (25)

Such a structure is necessary to describe the detec-

tion process of the current targets: each target is

either detected or missed, hence one would choose

a Bernoulli process for the inner and the predicted

process for the outer functional.

With the above considerations in mind, the general form

of the PGFL describing the joint target and measurement

processes, dependent on sensor state φ, is of the form

GJ(g, h|φ) = Gpr (hGd(g|·, φ))Gc(g|φ). (26)

Here, Gd(g|·, φ) is the Bernoulli detection process for

a given target state x and sensor state φ with detection

2This formula is also called Faà di Bruno’s formula for chain differ-
entials.

probability p�(x) = pd(x|φ) and single-object single-

measurement association likelihood s�(·) = l(x|·, φ), i.e.

Gd(g|x, φ) = 1− pd(x|φ) + pd(x|φ)
∫

g(z)l(x|z, φ)dz.
(27)

III. DERIVATION OF THE MOLS

The MOL of each filter is obtained by first setting h = 1
and then taking the |Z|-fold derivative of (26) w.r.t. g
(in the manner of (20)), i.e. differentiating once for each

measurement z in the set Z. The only difference between

the two forms is the model assumption regarding the

predicted and clutter processes.

A. Proof of Theorem II.1

In case of the PHD filter, both Gpr and Gc are Poisson

PGFLs with predicted intensity μ•
pr and clutter intensity

μ•
c , such that (26) takes the form

G•
J(g, 1|φ) = exp

[∫
(g(z)− 1)μ•

c(z|φ)

+

∫ (
Gd(g|x, φ)− 1

)
μ•
pr(x|φ)dx

]
.

(28)

Differentiation by g requires repeated applications of the

chain rule (23) which pulls out one multiplicative term

μ•
c(z|φ)+

∫
pd(x|φ)l(x|z, φ)μ•

pr(x|φ)dx for each z ∈ Zk.

The final result is obtained by setting g = 0.

An alternative derivation of the MOL of the PHD filter

is found in [22] where the FISST framework is used.

B. Proof of Theorem II.2

The Panjer filter assumes that Gpr and Gc are Panjer

processes with spatial distributions s◦pr and s◦c , respec-

tively, and corresponding parameters αpr, βpr and αc, βc.

The explicit form of (26) becomes in this case

G◦
J(g, 1|φ)=

[
1 +

1

βc

∫
(1− g(z))s◦c(z|φ)dz

]−αc

·
[
1 +

1

βpr

∫ [
1−Gd(g|x, φ)

]
s◦pr(x|φ)dx

]−αpr
(29)

which needs to be differentiated using the general product

rule (22). Using the notations G◦
c(g|φ) := Fc(g|φ)−αc

and G◦
pr(g|φ) := Fd(g|φ)−αpr for the two right-hand-side

terms of (29), the corresponding derivatives are

δ|Z̄|G◦
c(g; (δz)z∈Z̄ |φ) = Fc(g|φ)−αc−|Z̄| (αc)|Z̄|↑

β
|Z̄|
c

∏
z∈Z̄

s◦c(z)

(30)

and

δ|Z|G◦
pr(g; (δz)z∈Z |φ) = Fd(g|φ)−αpr−|Z| (αpr)|Z|↑

β
|Z|
pr

·
∏
z∈Z

∫
pd(x|φ)l(x|z, φ)s◦pr(x|φ)dx.

(31)

Including (30) and (31) into (22), switching the summa-

tions and rearranging the terms leads to the desired result.
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