Who will benefit more from low-dose alteplase in acute ischemic stroke?

Citation for published version:

Digital Object Identifier (DOI):
10.1177/1747493019858775

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
International Journal of Stroke

Publisher Rights Statement:
This is the authors' peer-review manuscript as accepted for publication.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Who will benefit more from low-dose alteplase in acute ischaemic stroke?
| Li, qiang; The George Institute for Global Health, University of Sydney
 Bae, Hee-Joon
 Carcel, Cheryl; The George Institute for Global Health, Neurological and Mental Health Division
 Delcourt, Candice; The George Institute, Arima, Hisatomi; The George Institute for Global Health, NMH; Fukuoka University, Department of Preventive Medicine and Public Health, Faculty of Medicine
 sato, shoichiro
 Robinson, Tom
 Song, Lili
 Chen, Guofang
 Yang, Jie; Nanjing First Hospital, Neurology
 Chalmers, John
 Lindley, Richard; George Institute for Global Health, Neurological and Mental Health
 Woodward, Mark; The George Institute for Global Health, Neurological & Mental Health Division
 Keywords: Acute stroke therapy, Clinical trial, Ischaemic stroke, rtPA, Thrombolysis, tPA |
Who will benefit more from low-dose alteplase in acute ischaemic stroke?

Xia Wang PhD, Keon-Joo Lee MD, Tom J Moullaali MD, Beom Joon Kim MD, Qiang Li MBiostat, Hee-Joon Bae MD PhD, Cheryl Carcel MD, Candice Delcourt MD PhD, Hisatomi Arima MD PhD, Shoichiro Sato MD PhD, Thompson G Robinson MD, Lili Song MD PhD, Guofang Chen MD, Jie Yang MD, John Chalmers MD PhD, Craig S Anderson MD PhD, Richard Lindley, Mark Woodward PhD, for the ENCHANTED Investigators

1 The George Institute for Global Health, Faculty of Medicine, University of New South Wales, NSW, Australia
2 The Department of Neurology and Cerebrovascular Center, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
3 Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
4 The University of Sydney, Sydney, Australia
5 Neurology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
6 Department of Public Health, Fukuoka University, Japan
7 Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Centre, Osaka, Japan
8 University of Leicester, Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, Leicester, UK
9 The George Institute China at Peking University Health Science Center, Beijing, PR China
10 Neurology Department, the Affiliated Xuzhou Centre Hospital of Nanjing University of Chinese Medicine, Xuzhou, China
11 Department of Neurology, the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
12 Westmead Hospital, University of Sydney, Sydney, NSW, Australia
13 The George Institute for Global Health, University of Oxford, Oxford, UK
Abstract

Objectives

Controversy persists over the benefits of low- versus standard-dose intravenous alteplase for treatment of acute ischaemic stroke (AIS). We sought to determine individual patient factors that contribute to the risk-benefit balance of low-dose alteplase treatment.

Methods

Observational study using data from the Enhanced Control of Hypertension and Thrombolysis Stroke Study (ENCHANTED), an international, randomised, open-label, blinded-endpoint trial that assessed low-dose (0.6mg/kg) versus standard-dose (0.9mg/kg) intravenous alteplase in AIS patients. Logistic regression models were used to estimate the benefit of good functional outcome (scores 0 or 1 on the modified Rankin scale [mRS] at 90-days) and risk (symptomatic intracerebral haemorrhage [sICH]), under both regimens for individual patients. The net advantage for low-dose, relative to standard-dose, alteplase was calculated by dividing excess benefit by excess risk according to a combination of patient characteristics. The algorithms were externally validated in a nationwide acute stroke registry database in South Korea.

Results

Patients with an estimated net advantage from low-dose alteplase, compared with without, were younger (mean age of 66 vs. 75 years), had lower systolic blood pressure (BP) (148 vs. 160 mmHg), lower National Institute of Health Stroke Scale score (median of 8 vs. 16), and no atrial fibrillation (AF) (10.3% vs. 97.4%), diabetes mellitus (DM) (19.2% vs. 22.4%) or pre-morbid symptoms (defined by mRS=1) (16.3% vs. 37.8%).

Conclusion

Use of low-dose alteplase may be preferable in AIS patients with a combination of favourable characteristics, including younger age, lower systolic BP, mild neurological impairment, and no AF, DM, or pre-morbid symptoms.
INTRODUCTION

Alteplase is the only established thrombolytic treatment for acute ischaemic stroke (AIS), with most guidelines recommending an intravenous dose of 0.9 mg/kg for eligible AIS patients. However, the are data to suggest that Asians are at increased risk for symptomatic intracerebral haemorrhage (sICH); this led to a lower dose of 0.6 mg/kg of alteplase being approved in Japan, which has been variably adopted by clinicians elsewhere in Asia and beyond.

In the Enhanced Control of Hypertension and Thrombolysis Stroke Study (ENCHANTED), low-dose alteplase was not found to be statistically non-inferior to a standard-dose alteplase on the conventional binary outcome of death or any disability, defined by scores 2 to 6 on the modified Rankin scale (mRS) at 90 days after the onset of symptoms. However, low-dose alteplase was found to be non-inferior for overall functional recovery, through ordinal analysis of the mRS, and to clearly reduce the risk of sICH, the most worrisome complication of this treatment.

A combination of patient characteristics may influence the risk-benefit balance of low-dose relative to standard-dose alteplase in AIS patients. The aim of this study was to develop clinical prediction models that incorporate plausible risk and benefit estimates in order to determine individual patient factors that contribute to the risk-benefit balance of low-dose compared with standard-dose alteplase treatment.

METHODS

Development cohort

The ongoing ENCHANTED trial is an international, multi-centre, quasi-factorial, prospective, randomised, open-label, blinded-endpoint trial; the details of which are outlined elsewhere. The alteplase-dose arm of the trial has concluded, where 3310 patients with a clinical diagnosis of
AIS confirmed on brain imaging and fulfilling standard criteria for thrombolysis treatment, including symptom onset within 4.5 hours, were randomly assigned to receive low- (0.6mg/kg; 15% as bolus, 85% as infusion over 1 hour) or standard-dose (0.9mg/kg; 10% as bolus, 90% as infusion over 1 hour) alteplase. The intensity of blood pressure (BP) control arm of the trial is ongoing and due to report results in 2019. The study protocol was approved by the appropriate ethics committee at each participating centre, and written informed consent was obtained from each patient or an appropriate surrogate.

Key demographic and clinical characteristics were recorded at the time of enrolment of patients, with the severity of neurological impairment measured using the National Institutes of Health Stroke Scale (NIHSS) at baseline, 24 hours, and at Day 7 (or on discharge from hospital where this was earlier). Digital images of all baseline and follow-up CT, MRI and angiogram images, were uploaded for central review by independent assessors blind to clinical data, treatment, and date and sequence of scan using MIStar version 3.2 (Apollo Medical Imaging Technology, Melbourne, Victoria, Australia). Assessors graded any haemorrhage as intracerebral, subarachnoid, intraventricular, subdural or other; sICH was graded across all standard definitions.(7)

Validation cohort

Study subjects were selected from a prospective, multi-centre, nationwide acute stroke registry database in South Korea, which was established in April 2008 and described in detail elsewhere.(11, 12) The collaborative registry study group consisted of 15 academic and regional stroke centres as of July 2014. Participating centres enrolled consecutive acute stroke cases admitted within 7 days from onset into a web-based database system. Study data were regularly audited by the central adjudication committee using pre-specified query sequences. Acute stroke
management, including use of recanalization therapy, was performed according to current clinical
guidelines and institutional protocols, at the discretion of individual physicians who managed the
patients.(13) Information on patient characteristics and treatments were obtained from the registry
database.

Outcomes

A beneficial outcome was defined as excellent functional recovery according to scores 0 or 1 on
the mRS at 90 days: this was the primary efficacy outcome in the alteplase-dose arm of the
ENCHANTED trial. A risk outcome was defined as sICH according to the Safe Implementation
of Thrombolysis in Stroke-Monitoring Study (SITS-MOST).

Statistical analysis

Two logistic regression models were developed: one for the prediction of benefit and the other for
the prediction of risk. Significant predictors (P<0.1) from the univariate analyses and randomised
dose arm were tested for their associations with outcomes in multivariable models. The full models
were reduced by successively removing the non-significant covariates until all the remaining
predictors remained statistically significant (P<0.05). Randomised treatment group was forced
into the models. Collinearity and interaction between variables were checked. Significant two-
way and three-way interactions (P <0.05) between variables were included in models. The models
were validated in the South Korean acute stroke registry database. Performance of the final
prediction models was assessed using an area under the receiver-operating-characteristic curve
(AUROC), with c-statistic for discriminative ability and the Hosmer–Lemeshow goodness-of-fit
statistic for calibration.(14)
The models were constructed to estimate the probabilities of benefit and risk for any patient according to low- and standard-dose alteplase. The treatment variable was fixed in turn to low-dose and standard-dose alteplase, with the probabilities of benefit and risk for subject \(i \) represented as \(B^L_i \) and \(B^S_i \), and \(R^L_i \) and \(R^S_i \), respectively, for the two doses. The net advantage of low-dose alteplase is defined as \(\frac{B^L_i - B^S_i}{R^L_i - R^S_i} \). A net advantage \(>1 \) therefore indicates the superiority of low-dose alteplase. However, this methodology assumes that benefit and risk have equal weight, which may not be acceptable to some clinicians. Thus, a weighted net advantage was assigned as \(w \frac{B^L_i - B^S_i}{(1 - w)(R^L_i - R^S_i)} \), where \(w \) is the relative weight (between 0 and 1) given to benefit. For example, if the risk of harm from sICH is considered to be more important, and the clinician should wish to disregard potential functional benefits from treatment, \(w \) should be set close to 0. Conversely, if the risk of harm from sICH is considered to be less important, and wishes to focus on positive functional outcome, then \(w \) should be set close to 1. The equations to estimate the probabilities were shown in SFigure I. Two-sided P values were reported and \(P < 0.05 \) was considered statistically significant. SAS version 9·3 (SAS Institute, Cary, NC) was used in all analyses.(5)

Results

Model development and performance

All patients with complete information (\(n=3197 \)) were included in the benefit analysis: 1530 patients (47.8%) had an excellent outcome; 48.9% and 46.8% had an excellent outcome in the low-dose and standard-dose alteplase groups, respectively. The characteristics of included patients by mRS scores 0-1 versus 2-6 are shown in STable 1. Patients with an excellent functional outcome were significantly more likely to be young, male, of Asian ethnicity, with a mild
neurological deficit, with fewer co-morbidities (including previous stroke, coronary artery disease, diabetes mellitus [DM], and atrial fibrillation [AF]), and lower prior use of warfarin, aspirin, and statin therapy, at baseline. After successively removing non-significant covariates from the multivariable model, only age, systolic BP, baseline NIHSS score, pre-morbid level of function [estimated mRS score], and history of AF and DM remained significant. Randomized treatment group was forced into the model to estimate the predicted probabilities according to alteplase dose. A significant interaction between age and AF was identified and included in the model (Table 1). No collinearity was found. The final model shows good discriminative ability (c-statistic 0.75, SFigure II) and excellent calibration (Hosmer–Lemeshow P=0.54, SFigure III).

In order to produce estimates for the same population, only patients included in the benefit analysis were included in the risk analysis: 51 (1.6%) had sICH, including 1% and 2.2% in the low-dose and standard-dose alteplase groups, respectively. Patients with sICH were significantly more likely to be older, with a severe neurological deficit, and with history of co-morbidities (including hypertension, previous stroke, coronary artery disease, DM, and AF) and prior use of aspirin at baseline (Stable 2). The final model includes systolic BP, AF and randomised dose arm (Table 2), and demonstrates good discrimination (c-statistic 0.71, SFigure II) and excellent calibration (Hosmer–Lemeshow P=0.44, SFigure III). No collinearity or interactions were found.

Model validation and performance

There were 1526 (29.5% were treated by low-dose alteplase) patients included in the analysis from the acute stroke registry dataset. The benefit model demonstrated both good discrimination (C-statistic: 0.76) and calibration (Hosmer–Lemeshow P=0.30). The risk model demonstrated moderate discrimination (0.62) and good calibration (P=0.83). Both the benefit and risk model demonstrated good discrimination (C-statistic: 0.76 and 0.62, respectively; (SFigure IV) and
calibration (Hosmer–Lemeshow P=0.30 and P=0.83, respectively). Predicted and observed
probabilities of the outcomes in the validation data set corresponded well to over one tenth of
predicted probability (Figure 1).

Net advantage from low-dose alteplase according to patient characteristics

AIS patients had a net advantage from low-dose alteplase when they were younger, had lower
systolic BP, mild neurological deficit, and no AF, DM or pre-morbid symptoms (mRS=1) (Table
3). In the validation cohort, those with a net advantage had the same combination of characteristics
to the development cohort (Table 3). When benefit and risk were assigned different weight, results
followed a similar pattern (STable 3).

Discussion

The present analysis from ENCHANTED, the only large-scale randomised evaluation of different
doses of intravenous alteplase for the treatment of AIS, demonstrates that patient-specific
characteristics may determine the anticipated individual effects of low-dose alteplase in terms of
benefits of an excellent outcome (mRS 0-1 at 90 days) and increased risk of sICH. The model
demonstrated good discriminative ability and was well calibrated when externally validated in the
nationwide acute stroke registry dataset from South Korea. Low-dose alteplase appears optimal
in younger patients who have lower systolic BP, mild neurological deficit, and an absence of major
cardiovascular co-morbidities or pre-morbid symptoms.

A risk-benefit algorithm was generated from the ENCHANTED trial, where the percentage of
excellent outcome (mRS 0-1) was 48.9% and 46.8% in the randomised low-dose and standard-
dose alteplase groups, respectively, but where low-dose alteplase reduced the risk of sICH
significantly by 52% according to the SITS-MOST definition. However, this information pertains
to group level and it is not informative over the choice of dose of alteplase at an individual patient level. Furthermore, important secondary analyses failed to identify any patient subgroup that can clearly benefit from low-dose alteplase. Our approach, therefore, was to develop a risk score that incorporated multiple patient-specific variables, in order to determine the balance of benefit and risk for an individual patient according to a combination of characteristics.

Our analyses confirm that age, systolic BP, neurological severity, co-morbid AF and DM, and pre-morbid symptoms, are important factors that influence outcome in thrombolysis-treated AIS patients; (15-17) these factors also form components of established risk scores. (18)(19) More specifically, we have shown a net advantage from low-dose alteplase for younger patients with a normal level of systolic BP (i.e. <140mmHg), mild neurological deficit (i.e. score <10 on NIHSS), and no AF, DM or pre-morbid symptoms; factors which are known to predict good functional outcome and lower risk of sICH after AIS. (17, 20, 21) It is possible that mild AIS patients with a favourable risk profile and inherently favourable prognosis simply benefit from a reduced risk of sICH when they are treated with low-dose alteplase. However, they may also be less likely to have greater ischaemic deficit from large vessel occlusions that are more resistant to low- compared with standard-dose alteplase, thus avoiding the potential reduced lytic efficacy associated with under treatment.

Following on, there are plausible reasons that low-dose alteplase was less effective in severe AIS patients with an unfavourable risk profile, in this case those who were older, had higher systolic BP, severe neurological impairment, co-morbid AF and DM, and pre-morbid symptoms. This may again reflect stroke aetiology; those with higher risk profiles are more likely to have large vessel occlusion and/or greater thrombus length where low-dose alteplase is potentially less effective in achieving recanalization. (8, 22) They may therefore be subject to excess harm from the sequelae
of failed recanalization such as infarct extension, cerebral oedema and need for decompressive
hemicraniectomy, despite lower rates of sICH. We did not have access to neuroimaging data on
these factors in the present analyses, and future analysis of the brain images acquired from
participants in ENCHANTED (5000+ scans) may confirm or refute this hypothesis.

In regard to BP, observational data from the SITS registry (23, 24) revealed that high systolic BP
post-thrombolysis is associated with sICH and poor outcome.(23) In particular, the most
favourable outcome was in those with systolic BP levels of 141-150 mmHg between 2–24 hours
after thrombolysis.(24) Systolic BP was an important factor in our risk-benefit model, but not in
a way that one might initially anticipate; patients at higher risk of sICH due to elevated BP did not
benefit from low-dose alteplase. Instead, the present model suggests patients with favourable
characteristics that include lower systolic BP had greater net advantage from low-dose alteplase.
This is due to the characteristics being considered in combination rather than individually. The
ongoing ENCHANTED BP arm(6) will provide insight as to whether more intensive BP lowering
(systolic target 130-140 mmHg) has superior efficacy and lower risk of ICH compared to
longstanding guideline recommendations (systolic target <180 mmHg) in the context of
thrombolysis in AIS.

Interpretation of the present model should be done in the context of the original trial, where, in the
primary group-level analyses, low-dose alteplase was not shown to be non-inferior to standard-
dose, nor did it perform significantly well in a particular subgroup according to single patient
characteristics.(7-10, 25) The novel value of the current predictive model arises from the use of a
combination of clinically significant and routinely available patient characteristics that constitute
a profile for which low-dose alteplase confers a net advantage. The potential utility of low-dose
alteplase in this context has scientific plausibility through the mechanisms discussed above, and
furthermore, was externally validated using real-world registry data. However, there was much less sICH in ENCHANTED according to SITS-MOST criteria compared with that in the stroke registry using a comparable but less specific criteria. Therefore, the risk model performs less optimistically due to lower discriminative ability. This is an unavoidable limitation of comparing clinical trial definitions with those applied to registries. It is also worth noting that the majority of participants in ENCHANTED were Asian, and the model was validated in a Korean cohort, thus its applicability to other groups in unknown.

In conclusion, the beneficial effects of low-dose alteplase in the individual patient, in terms of improving the probability of excellent outcome (mRS 0-1) and reducing the risk of sICH, can be quantified using a multivariable risk algorithm. Low-dose alteplase appears optimal in patients with mild AIS and a favourable risk profile. Future studies should aim to determine the effects of low-dose vs. standard dose alteplase in subgroups according to neuroimaging characteristics, such as thrombus burden and infarct volume, as well as associations of low-dose alteplase with subsequent infarct extension, cerebral edema and hemicraniectomy. These findings may also support future research that focuses on low-dose thrombolysis in mild AIS patients, for example in those who are not eligible for mechanical thrombectomy.
Contributors

XW undertook the analyses and wrote the first and subsequent drafts of report; TM, QL, CA, and MW interpreted the data and wrote the first draft of the report; TR, CA, RL and JC obtained funding, planned and supervised the study; all other authors provided critical review of the report.

Acknowledgements

Funding was principally received from the National Health and Medical Research Council (NHMRC) of Australia. Additional funding was from the Stroke Association of the United Kingdom, the National Council for Scientific and Technological Development of Brazil, and the Ministry for Health, Welfare and Family Affairs of the Republic of Korea (HI14C1985).

Disclosures

X Wang reports receiving research grant from the George Institute for Global Health. C.S. Anderson reports receiving fees for Advisory Panels of Astra Zeneca and Medtronic, speaking at seminars for Takeda China and Boehringer Ingelheim, and a research grant from Takeda China. T.J. Moullaali reports grants from British Heart Foundation. H. Arima reports fees for speaking at seminars for Daiichi Sankyo, Takeda and Bayer. T. Robinson is a National Institute of Health Research Senior Investigator, and reports receiving speaking fees from Bayer and Boehringer Ingelheim, and fees for Advisory Panels from Bayer and Daiichi Sankyo. J. Chalmers reports research grants and lecture fees from Servier for the ADVANCE trial and post-trial follow-up. M. Woodward is a consultant for Amgen.
References

6. Huang Y, Sharma VK, Robinson T, Lindley RI, Chen X, Kim JS, et al. Rationale, design, and progress of the ENhanced Control of Hypertension ANd Thrombolysis strokE stuDy (ENCHANTED) trial: An international multicenter 2 x 2 quasi-factorial randomized controlled trial of low- vs. standard-dose rt-PA and early intensive vs. guideline-

Figure legends

Figure 1 Predicted vs. observed probabilities of outcomes in the validation model
Table 1 Final predictive model for benefit* at 90 days

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>-0.0117</td>
<td>0.00355</td>
<td>0.001</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>-0.00598</td>
<td>0.00204</td>
<td>0.003</td>
</tr>
<tr>
<td>NIHSS score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-10</td>
<td>-0.9667</td>
<td>0.1102</td>
<td><0.0001</td>
</tr>
<tr>
<td>11-15</td>
<td>-1.9048</td>
<td>0.1299</td>
<td><0.0001</td>
</tr>
<tr>
<td>≥16</td>
<td>-2.4569</td>
<td>0.1431</td>
<td><0.0001</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>1.3955</td>
<td>0.6471</td>
<td>0.031</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>-0.2604</td>
<td>0.0996</td>
<td>0.009</td>
</tr>
<tr>
<td>No significant disability (mRS=1)</td>
<td>-0.7921</td>
<td>0.1089</td>
<td><0.0001</td>
</tr>
<tr>
<td>Randomised to low-dose alteplase treatment</td>
<td>-0.1443</td>
<td>0.0788</td>
<td>0.067</td>
</tr>
<tr>
<td>Age*atrial fibrillation</td>
<td>-0.0238</td>
<td>0.00905</td>
<td>0.009</td>
</tr>
</tbody>
</table>

BP: blood pressure; NIHSS: National Institutes of Health Stroke Scale; mRS: modified Rankin scale; SE: standard error.

* defined according to scores 0-1 on the mRS at 90-days.
Table 2: Final predictive model for the risk of symptomatic intracranial haemorrhage*

<table>
<thead>
<tr>
<th>Estimate</th>
<th>SE</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic BP (mmHg)</td>
<td>0.0206</td>
<td>0.007</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>1.3316</td>
<td>0.287</td>
</tr>
<tr>
<td>Randomised to low-dose alteplase treatment</td>
<td>-0.8018</td>
<td>0.305</td>
</tr>
</tbody>
</table>

BP: blood pressure; SE: standard error

*defined according to the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST)
Table 3 Patient characteristics by net advantage from low-dose alteplase

<table>
<thead>
<tr>
<th>Net advantage from low-dose alteplase</th>
<th>Development cohort</th>
<th>Validation cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No (n=339, 11%)</td>
<td>Yes (n=2858, 89%)</td>
</tr>
<tr>
<td>Age, years</td>
<td>75(10.4)</td>
<td>66(12.7)</td>
</tr>
<tr>
<td>Systolic BP, mmHg</td>
<td>160(14.8)</td>
<td>148(19.9)</td>
</tr>
<tr>
<td>NIHSS</td>
<td>16(10-20)</td>
<td>8(5-13)</td>
</tr>
<tr>
<td>Pre-stroke mRS=0</td>
<td>211(62.2%)</td>
<td>2393(83.7%)</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>330(97.4%)</td>
<td>294(10.3%)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>76(22.4%)</td>
<td>549(19.2%)</td>
</tr>
</tbody>
</table>

	No (n=363, 24%)	Yes (n=1162, 76%)
Age, years	74(10.3)	66(12.5)
Systolic BP, mmHg	164(26.3)	143(26.1)
NIHSS	16(12-20)	9(5-14)
Pre-stroke mRS=0	236(65.0%)	1044(89.9%)
Atrial fibrillation	322(88.7%)	302(26.0%)
Diabetes mellitus	104(28.7%)	267(22.9%)

BP: blood pressure; mRS: modified Rankin scale; NIHSS: National Institute of Health Stroke Scale