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Abstract
Increased oxidative stress occurs in the lungs and systemically in COPD, which plays a role in
many of the pathogenic mechanisms in COPD. Hence, targeting local lung and systemic oxidative
stress with agents that modulate the antioxidants/redox system or boost endogenous antioxidants
would be a useful therapeutic approach in COPD. Thiol antioxidants (N-acetyl-L-cysteine and N-
acystelyn, carbocysteine, erdosteine, and fudosteine have been used to increase lung thiol content.
Modulation of cigarette smoke induced oxidative stress and its consequent cellular changes have
also been reported to be effected by synthetic molecules, such as spin traps (α-phenyl-N-tert-butyl
nitrone), catalytic antioxidants (superoxide dismutase [ECSOD] mimetics), porphyrins, and lipid
peroxidation and protein carbonylation blockers/inhibitors (edaravone and lazaroids/tirilazad).
Pre-clinical and clinical trials have shown that these antioxidants can reduce oxidative stress,
affect redox and glutathione biosynthesis genes, and pro-inflammatory gene expression. In this
review the approaches to enhance lung antioxidants in COPD and the potential beneficial effects
of antioxidant therapy on the course of the disease are discussed.

Keywords
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Introduction
The lungs due to their high blood supply and large surface area are constantly in a high-
oxygen environment. In addition the lung epithelium is also constantly exposed to oxidants
generated endogenously during respiration from mitochondrial electron transport, from
activated inflammatory cells that influx into the lungs and exogenously from cigarette
smoke (CS) and air pollutants, such as ozone, nitrogen dioxide, and combustion particulates,
as a result of its exposure to the environment.
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When the the resident antioxidants are insufficient or fail to upregulate sufficiently to
neutralize an increased oxidant burden oxidative stress occurs. Reactive oxygen species
(ROS), either non-radical, such as hydrogen peroxide (H2O2) or oxygen radicals, such as
superoxide anion (O2

•−) and the hydroxyl radical (•OH) that are highly unstable species with
unpaired electrons are capable of initiating oxidation, and together with reactive nitrogen
species (RNS) result in a variety of adverse consequences ranging from cell necrosis,
senescence, apoptosis, autophagy, lipid peroxidation and protein carbonylation,
inflammatory responses, epigenetic changes, remodeling of extracellular matrix and blood
vessels, endothelial dysfunction, inactivation of antiproteases, mucus hypersecretion, and
impaired tissue repair [1]. COPD is also a disease associated aging, which has been shown
to result in a decline in the endogenous antioxidant defenses resulting in less protection
against oxidative stress. The pathogenesis of COPD involves several processes as described
above. All of these processes are intimately associated with oxidative stress (Fig 1) [1•].

Rationale for antioxidants therapy in COPD
Cigarette smoke is the main etiological factor in pathogenesis of COPD and contains more
than 1015-17 oxidant/free radical molecules per puff [2], which increases oxidant burden in
the lungs in current smokers. Since many of the pathogenic mechanisms in COPD involve
oxidative stress, oxidative stress should be a target for treatment that may have an effect on
underlying disease processes in this condition. This could be achieved either by decreasing
the generation of oxidants or by enhancing antioxidants.

Clinical testing of several small-molecular weight compounds that target oxidant/redox
signaling, or quench oxidants and reactive aldehydes are currently being conducted.
Antioxidant agents, such as thiol compounds/donors and their analogs (GSH and mucolytic
drugs, such as N-acetyl-L-cysteine, carbocysteine, erdosteine, and fudosteine all effectively
scavenge/detoxify free radicals/oxidants, increase intracellular thiol levels and control NF-
κB activation, and hence inhibit inflammatory gene expression. Enzyme mimetics that can
either enhance the expression/activity of the antioxidant enzymes or mimic their function are
currently being developed. In the ensuing sections, we discuss the beneficial effects of a
wide variety of pharmacological antioxidants that are potential therapeutic agents in COPD
(Table 1). The efficacy of these antioxidant molecules can be assessed by i) improving
symptoms or function, ii) modifying the course of the disease by reducing the decline in
lung function or decreasing exacerbation frequency, and iii) decreasing the oxidant burden
or biomarkers of oxidative stress in patients with COPD.

Small molecule thiol antioxidants
N-acetyl-L-cysteine (NAC)

NAC is an acetyl derivative of the amino acid, cysteine, and is strong reducing agent (Table
1). NAC is a mucolytic agent that reduces mucus viscosity, thereby improving mucociliary
clearance. NAC is deacetylated to cysteine in the gastrointestinal tract which serves as
precursor of glutathione. By reducing disulfide bonds, NAC is able to neutralize oxidant
species. Since NAC can reduce intracellular cystine to cysteine, it can increase intracellular
GSH in vivo in lungs.

NAC is the most widely studied thiol molecule in vitro and in vivo. In preclinical studies
oral administration of NAC has been shown to attenuate elastase-induced emphysema in rats
[3]. NAC also protects against the oxidation of Z α1-antitrypsin by cigarette smoke in an
early-onset emphysema mouse model [4]. In view of the importance of glutathione (GSH) as
an antioxidant in the lungs, NAC has mainly been used to enhance lung GSH in patients
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with COPD [5]. Clinical studies of the beneficial effects of NAC and other thiols in patients
with COPD have yielded mixed results (Table 2) [5-19].

A randomized, double-blind, placebo controlled trial of 6-month of 600 mg NAC, twice
daily reduced various plasma and BAL fluid oxidative biomarkers in smokers [18]. NAC
600 mg twice daily for 2 months was shown to reduce the oxidant burden in the airways of
stable COPD patients [15], and was associated with reduced risk of exacerbations and
improved lung symptoms in patients with chronic bronchitis [10]. Another study has shown
a beneficial effect of NAC on muscle function by demonstrating an increase in quadriceps
endurance time in severe COPD patients associated with a decrease in markers of systemic
oxidative stress [20].

A Cochrane systematic review and other meta-analyses [9] showed a decrease in number of
exacerbations by 29% . However, the large multicenter trial, the Bronchitis Randomized on
NAC Cost-Utility Study (BRONCUS) showed no effect on exacerbation frequency or
decline in FEV1 [7••]. However, this study showed a reduction in overinflation and in
exacerbation frequency in patients with COPD not treated with inhaled glucocorticoids [7].

NAC has to be deacetylated in the gut to cysteine to act as a precursor of GSH and as such is
not very bioavailable to increase GSH. Thus further studies may be warranted using NAC at
higher doses (1200 or 1800 mg/day) or using other thiol agents that have a greater
bioavailability in order to observe any clinical benefit in COPD.

Carbocysteine
S-carboxymethylcysteine (carbocysteine or S-CMC), which has mucoactive, antioxidant and
anti-inflammatory properties, is a thiol derivative of amino-acid, L-cysteine (Table 1). Oral
preparations of carbocysteine both as S-CMC and its lysine salt (S-CMC-lys) are available.
The lysine residue in S-CMC-lys is cleaved in the gastrointestinal tract to yield the active
drug S-CMC. The mucoactive action of carbocysteine differs from other thiol mucolytics,
such as NAC and erdosteine since it increases the sialomucin content which influences the
rheological properties of mucus via the inhibition of kinins [21]. Carbocysteine also
facilitates muco-ciliary clearance velocity, particularly in patients with chronic bronchitis
who have slow clearance before treatment [21].

In preclinical studies Carbocysteine has been shown to protect against emphysema induced
by cigarette smoke in rats [22]. Treatment of COPD patients with S-CMC-Lys for a 6-
months significantly decreased the levels of the lipid peroxidation product 8-isoprostane and
the pro-inflammatory cytokine: IL-6, indicating that the drug has both antioxidant and anti-
inflammatory properties [23].

Due to its ability to reduce bacterial respiratory tract infections in COPD [24-25], it has been
suggested that carbocysteine may act via the inhibition of pathogen adherence to cells. This
is supported by in vitro studies, where carbocysteine treatment has been shown to reduce in
the adherence of Moraxella catarrhalis (a bacteria commonly found in exacerbations of
COPD) to pharyngeal epithelial cells, of both healthy subjects and those with chronic
bronchitis, when compared to placebo treated group [24]. Similarly, carbocysteine can
significantly reduce attachment of Streptococcus pneumoniae to pharyngeal epithelial cells
[25]. Carbocysteine could also reduce the frequency of common colds and associated
exacerbations in COPD patients, a property that has been attributed to its ability to decrease
ICAM-1 expression in the respiratory tract [26].

Clinical studies of carbocysteine in COPD patients are now available (Table 2) [17,26-34].
The PEACE study investigated the effect of treatment of 709 Chinese COPD subjects for 3
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years with carbocysteine (250 mg t.d.s) and found that COPD patients treated with
carbocysteine experienced fewer numbers of exacerbations per year [17••]. Of note the
majority of these patients were not receiving corticosteroids.

Erdosteine
Erdosteine is a mucoactive thiol antioxidant (Table 1). The drug was originally used as a
mucolytic agent and acts by breaking the disulfide bonds of mucus glycoproteins, affecting
the physical properties of the mucus, thus leading to increased mucus clearance [35]. It also
has antioxidant, anti-inflammatory, and antibacterial activity.

‘Equalife’, a randomized, placebo-controlled clinical study involving oral administration of
300 mg erdosteine twice daily for 8 months produced a significant improvement in quality
of health and a reduction in exacerbations compared to placebo [16]. Erdosteine has also
been reported to be beneficial in patients suffering from repeated, prolonged or severe
exacerbations of COPD [36-37]. In one study treatment with Erdosteine reduced the rate of
severe exacerbations requiring hospital admission [35]. Administration of erdosteine 300 mg
twice a day for 7 - 10 days also improved symptoms and reduced the duration of
hospitalization in patients presenting with an exacerbation of COPD [38]. Erdosteine (600
mg/day) treatment with procysteine has been shown to improve cigarette smoke-induced
ROS production by alveolar macrophages and the levels of the chemotactic cytokines IL-6
and IL-8 in bronchial secretions of current smokers with COPD [37]. The anti-inflammatory
properties of erdosteine have also been shown by a reduction in the levels of
proinflammatory eicosanoids in blood in COPD patients [39].

Fudosteine
Fudosteine, [(−)-(R)-2-amino-3-(3-hydroxypropylthio)] propionic acid (Table 1), has been
used and a mulcolytic and antioxidant. It has greater bioavailability than NAC and acts as an
antioxidant by increasing intracellular cysteine levels. In preclinical studies, fudosteine
inhibits mucin hypersecretion by downregulating MUAC5AC gene expression [40].
Expression levels of p-p38 MAPK and p-ERK in rat in vivo and of p-ERK in a bronchial
epithelial cell line in vitro are decreased by fudosteine [40]. Fudosteine has also been shown
to inhibit peroxynitrite-induced airway nitrative stress in lung epithelial cells by direct
scavenging of this free radical [41]. Hence, fudosteine may be used in the treatment of
chronic respiratory diseases, such as bronchial asthma, chronic bronchitis, COPD, and
bronchiectasis as a mucoactive agent [40,42].

Nrf2 activators
Nuclear factor erythroid 2 p45-related factor 2 (Nrf2) is a basic-leucine zipper (b-ZIP)
transcription factor present in the cytoplasm of normal cells that plays an important
protective role against electrophiles and ROS. In response to oxidative and electrophilic
stresses, Nrf2 detaches from its cytosolic inhibitory subunit, Kelch-like ECH-associated
protein 1 (Keap1), and translocates into the nucleus where it binds to the antioxidant
response element (ARE) of target genes [43-45]. Nrf2 regulates almost all the antioxidants
and phase II cytoprotective genes, such as NAD(P)H/quinone oxidoreductase 1(NQO1),
glutamate cysteine ligase modifier subunit (GCLM), glutamate cysteine synthase,
glutathione peroxidase (GPx), and several members of the glutathione S-transferase family
[43].

Studies with Nrf2 null mice have shown greater susceptibility of these mice to cigarette
smoke-induced emphysema compared with wild-type mice [46-47] indicating a protective
role for Nrf2. Loss of Nrf2 positive regulator DJ-1 (stabilizer of Nrf2) and posttranslational
modifications of the Keap1–Bach1 equilibrium results in downregulation of Nrf2 in the
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lungs of patients with COPD [48-51•]. The Nrf2 activator CDDO-imidazolide (Table 1) has
been shown to protect mice against CS-induced emphysema [45•]. Activation of Nrf2 by
sulforaphane (present in broccoli and cruciferous vegetables) can also have a beneficial
effect in attenuating some of biochemical alterations that occur in smokers/COPD [52••].

Novel compounds which are potent activators of Nrf2 or which stabilize Keap1/DJ-1/Maf
proteins can be developed. Chalcones have anti-inflammatory effects due to their ability to
inhibit the NF-κB pathway [53-54] and simultaneously activate the Nrf2/ARE pathway thus
inducing phase II detoxifying enzyme expression [55]. Currently, various derivatives of
chalcones are being developed with a potential therapeutic role in COPD [56•]. However,
the pharmacokinetics, bioavailability, and toxicity of these compounds in the lungs are as
yet unknown.

Lipid peroxidation and protein carbonylation inhibitors/blockers
Edaravone (MC-186)

Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is a potent free-radical and protein
carbonyl scavenger and inhibitor of lipid peroxidation [57-58]. Protein carbonylation and
carbonyl stress via aldehydes occur in COPD and hence edaravone has the potential to
protect the lungs against the effects of these oxidative products [59-60]. Edaravone has been
shown to ameliorate the lung injury, inflammation, oxidative stress, and mortality induced
by intestinal ischemia/reperfusion in rats [61]. Given the antioxidant, anti-inflammatory
properties of edaravone, it has potential as a treatment in COPD.

Lazaroids
Lazaroids (21-aminsteroids, U75412E or tirilazad mesylate) are a group of non-
glucocorticoid analogues of methyl-prednisolone which are able to penetrate hydrophobic
regions of the cell membrane, specifically to prevent peroxidation of membrane lipids [62].
The protective effects of lazaroids have been reported in many animal models of lung injury
[63-64], including the effects of cigarette smoke [65]. Their protective effect is mainly by
inhibition of lipid peroxidation. In a smoke-induced lung injury model lazaroids inhibited
the formation of free radicals and the release of tumor necrosis factor-α by alveolar
macrophages [66-67]. Further studies are required to evaluate the efficacy of lazaroids as
therapeutic strategy in COPD.

Enzymatic antioxidants
Cellular ROS can be effectively neutralized by antioxidant enzymes, such as superoxide
dismutase (SOD), catalase, and glutathione peroxidase, whose expression and activities are
altered in various disease conditions involving oxidative stress. Restoration of altered
antioxidant enzyme activity can be achieved by small molecules possessing catalytic
properties which can mimic the activity of the enzyme.

SOD mimetics
SOD mimetics are of three classes. The first class includes several manganese-based
macrocyclic ligands, such as M40401, M40403, and M40419 [68-69]. The second class
includes manganese-metaloporphyrins, such as AEOL-10113 and AEOL-10150 [70-71],
and the third category is comprised of “Salens” (manganese based SOD mimetic). Salens
have an additional advantage as they are also reported to have catalase-like activity, and
therefore can also neutralize H2O2, and ONOO− [72]. Until now only the second class of
SOD mimetics has been studied in animal models of airway inflammation. A significant
decrease in the lungs of markers of oxidative stress, and emphysema has been observed in
response to the SOD mimetic M40419 in animal models [68]. The SOD mimetic
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AEOL10150 has also been shown to inhibit cigarette smoke-induced lung inflammation in
the rat and to decreased lipid peroxidation and the generation of ONOO− [71]. The ability of
recombinant SOD treatment to prevent neutrophil influx into the lungs and decrease IL-8
release induced by cigarette smoking [73], indicates its potential as an antioxidant an anti-
inflammatory in COPD.

Broad antioxidant properties and the ability to scavenge superoxide, lipid peroxides,
ONOO-, and H2O2 have been attributed to the metalloporphyrin-based catalytic antioxidant,
MnTE-2-PyP [Manganese (III) Meso-Tetrakis-(NMethlypyridinium-2-yl) porphyrin]
[74-76]. Administration of MnTE-2-PyP has been shown to decrease inflammation and
injury induced by wide variety of factors [77-78]. Its anti-inflammatory properties have been
attributed to its ability to reduce NF-κB signaling [77]. Therefore, these compounds may
have potential for therapeutic use in COPD.

Extracellular superoxide dismutase (ECSOD or SOD3) is highly expressed in lungs and is
located in the extracellular matrix in the junctions of airway epithelial cells, the surface of
airway smooth muscle, and the lining of blood vessels of the lungs [79]. SOD3 directly
scavenges O2 

•−, and may therefore play an important role in protecting against oxidative
lung damage. SOD3 protects against cigarette smoke/elastase induced mouse models of
emphysema via reduction of oxidative ECM fragmentation and oxidative posttranslational
modifications of elastin fragments (leading to autoantibody production) [80••]. A recent
study has revealed that SOD3 can decrease CS-induced oxidative stress in mouse
macrophages [81]. SOD3 also attenuates lung inflammation and emphysema by decreasing
oxidative fragmentation of ECM, such as heparin sulfate and elastin [80]. Therefore, the
development of pharmacological mimetics to replenish/augment SOD3 in the lung would be
a rational therapeutic intervention for COPD/emphysema.

Glutathione peroxidase (GPx) mimetics
Ebselen is a selenium-based organic complex that mimics the activity of glutathione
peroxidase. Ebselen is strong antioxidant and is also known to have strong neutralizing
effect against the peroxynitrite radical [82]. Ebselen inhibits the activation of NF-κB/AP-1,
and hence the expression of pro-inflammatory genes in human leukocytes treated with
peroxynitrite. Ebselen has been shown in vivo in animal models to prevent LPS-induced
airway inflammation [83-84]. However, no reports are available as the protective effect of
ebselen against cigarette smoke-induced lung inflammation.

Spin traps and iNOS inhibitors
Spin traps are chemical agents which can quench free radicals to form measurable stable end
products. Most spin traps have a nitrone- or nitroxide-nucleus and are derivatives of these
moieties. Spin traps have been widely used for in vitro studies and their therapeutic effects
in vivo have also been investigated in models of lung inflammation using α-phenyl-N-tert-
butyl nitrone [85]. Early spin traps had extremely small half lives and generated toxic
hydroxyl radicals on decay. This problem has now been overcome by the introduction of
electron withdrawing moieties around the core pyrroline ring [86]. Isoindole-based nitrones
[87] and azulenyl-based nitrones [88], such as STANZ have strong antioxidant properties
and can inhibit lipid peroxidation in vitro. Phenyl-base nitrone spin trap (PBN) derivatives,
such as NXY-059 (PBN-2,4,disulfonate), have been shown to have benefits in a wide
variety of animal models of lung diseases (http://www.nitrone.com/).

Recent studies have suggested that inhibition of iNOS by various chemical inhibitors [N(6)-
(1-iminoethyl)-L-lysine (L-NIL), G-nitro-L-arginine-methyl ester or L-NAME attenuated
animal models of emphysema [89-91]. It is possible that selective inhibition of iNOS [90•]
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along with supplementation of other antioxidants may provide a strategy in the management
of COPD.

Redox sensors: Enzymatic
Thioredoxin

Thioredoxin (Trx) and redox effector factor-1 (Ref-1), belong to oxidoreductase family of
redox sensors. Trx, is primarily bound to proteins, such as hepatopoietin [92] and the
apoptosis signal regulating kinase (ASK-1) [93], that are released from these complexes
during oxidative stress [92]. After dissociation, Trx reduces a key thiol group within the
p65/NF-κB subunit leading to transcriptional activation [94]. Inhibiting Trx (in the nucleus)
with MOL-294 (a small molecular weight inhibitor of Trx), blocks nuclear activation of both
NF-κB and AP-1-dependent transcription that results in diminished neutrophil influx and
TNF-α production in an animal model [95]. Activation of Trx by synthetic small molecules
attenuated oxidative stress [96]. Overexpression of thioredoxin-1 (Trx-1), primarily due to
its antioxidant property attenuates CS-mediated oxidative stress and emphysema [97•],
however the effects in COPD still remain to be investigated.

Conclusions
Increased oxidative/carbonyl stress occurs in COPD as is thought to be an important
mechanism in the pathogenesis of this condition. Targeting oxidative stress with
pharmacological antioxidants or boosting the endogenous levels of antioxidants is likely to
be beneficial as a treatment in COPD. Antioxidant therapy may affect important outcomes in
COPD, such as overcoming steroid resistance, mucus hypersecretion, inflammation, and
ECM remodeling. Several small molecule antioxidant compounds have been investigated in
pre-clinical and clinical trials. Although thiol antioxidant treatments have shown promising
effects in targeting ROS and adverse oxidant-mediated cellular responses, development of
novel wide-spectrum small molecule antioxidants with a good bioavailability and potency
are needed for clinical trials for COPD. However, the clinical trials have been limited and
there is a lack of information on pharmacokinetics, bioavailability, toxicity, and absorption
of various exogenous antioxidants and activators of endogenous antioxidants.

Acknowledgments
This work was supported by the NIH 1R01HL085613, 1R01HL097751, 1R01HL09284, and NIEHS Environmental
Health Science Center grant P30-ES01247.

References
• of special interest

•• of outstanding interest

1•. Yao H, Rahman I. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in
pathogenesis of chronic obstructive pulmonary disease. Toxicol Appl Pharmacol. 2011; 254:72–
85. [PubMed: 21296096] A comprehensive review highlighting the antioxidant targets for
cigarette smoke-mediated oxidative damage in COPD.

2. Church DF, Pryor WA. Free-radical chemistry of cigarette smoke and its toxicological implications.
Environ Health Perspect. 1985; 64:111–126. [PubMed: 3007083]

3. Rubio ML, Martin-Mosquero MC, Ortega M, Peces-Barba G, Gonzalez-Mangado N. Oral N-
acetylcysteine attenuates elastase-induced pulmonary emphysema in rats. Chest. 2004; 125:1500–
1506. [PubMed: 15078764]

Rahman and MacNee Page 7

Curr Opin Pharmacol. Author manuscript; available in PMC 2013 September 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4. Alam S, Li Z, Janciauskiene S, Mahadeva R. Oxidation of Z alpha1-antitrypsin by cigarette smoke
induces polymerization: a novel mechanism of early-onset emphysema. Am J Respir Cell Mol Biol.
2011; 45:261–269. [PubMed: 20971880]

5. Bridgeman MM, Marsden M, Selby C, Morrison D, MacNee W. Effect of N-acetyl cysteine on the
concentrations of thiols in plasma, bronchoalveolar lavage fluid, and lung tissue. Thorax. 1994;
49:670–675. [PubMed: 8066561]

6. Decramer M, Dekhuijzen PN, Troosters T, van Herwaarden C, Rutten-van Molken M, van Schayck
CP, Olivieri D, Lankhorst I, Ardia A. The Bronchitis Randomized On NAC Cost-Utility Study
(BRONCUS): hypothesis and design. BRONCUS-trial Committee. Eur Respir J. 2001; 17:329–336.
[PubMed: 11405507]

7••. Decramer M, Rutten-van Molken M, Dekhuijzen PN, Troosters T, van Herwaarden C, Pellegrino
R, van Schayck CP, Olivieri D, Del Donno M, De Backer W, et al. Effects of N-acetylcysteine
on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-
Utility Study, BRONCUS): a randomised placebo-controlled trial. Lancet. 2005; 365:1552–1560.
[PubMed: 15866309]

8. Poole PJ, Black PN. Oral mucolytic drugs for exacerbations of chronic obstructive pulmonary
disease: systematic review. BMJ. 2001; 322:1271–1274. [PubMed: 11375228]

9. Poole PJ, Black PN. Preventing exacerbations of chronic bronchitis and COPD: therapeutic potential
of mucolytic agents. Am J Respir Med. 2003; 2:367–370. [PubMed: 14719989]

10. Stey C, Steurer J, Bachmann S, Medici TC, Tramer MR. The effect of oral N-acetylcysteine in
chronic bronchitis: a quantitative systematic review. Eur Respir J. 2000; 16:253–262. [PubMed:
10968500]

11. Grandjean EM, Berthet P, Ruffmann R, Leuenberger P. Efficacy of oral long-term N-
acetylcysteine in chronic bronchopulmonary disease: a meta-analysis of published double-blind,
placebo-controlled clinical trials. Clin Ther. 2000; 22:209–221. [PubMed: 10743980]

12. Kasielski M, Nowak D. Long-term administration of N-acetylcysteine decreases hydrogen
peroxide exhalation in subjects with chronic obstructive pulmonary disease. Respir Med. 2001;
95:448–456. [PubMed: 11421501]

13. Black PN, Morgan-Day A, McMillan TE, Poole PJ, Young RP. Randomised, controlled trial of N-
acetylcysteine for treatment of acute exacerbations of chronic obstructive pulmonary disease
[ISRCTN21676344]. BMC Pulm Med. 2004; 4:13. [PubMed: 15581425]

14. van Overveld FJ, Demkow U, Gorecka D, de Backer WA, Zielinski J. New developments in the
treatment of COPD: comparing the effects of inhaled corticosteroids and N-acetylcysteine. J
Physiol Pharmacol. 2005; 56:135–142. [PubMed: 16204787]

15. De Benedetto F, Aceto A, Dragani B, Spacone A, Formisano S, Pela R, Donner CF, Sanguinetti
CM. Long-term oral n-acetylcysteine reduces exhaled hydrogen peroxide in stable COPD. Pulm
Pharmacol Ther. 2005; 18:41–47. [PubMed: 15607126]

16. Moretti M, Bottrighi P, Dallari R, Da Porto R, Dolcetti A, Grandi P, Garuti G, Guffanti E, Roversi
P, De Gugliemo M, et al. The effect of long-term treatment with erdosteine on chronic obstructive
pulmonary disease: the EQUALIFE Study. Drugs Exp Clin Res. 2004; 30:143–152. [PubMed:
15553660]

17••. Zheng JP, Kang J, Huang SG, Chen P, Yao WZ, Yang L, Bai CX, Wang CZ, Wang C, Chen BY,
et al. Effect of carbocisteine on acute exacerbation of chronic obstructive pulmonary disease
(PEACE Study): a randomised placebo-controlled study. Lancet. 2008; 371:2013–2018.
[PubMed: 18555912] This study showed that COPD patients treated with carbocysteine (25 mg
t.d.s for 3 years) experienced fewer numbers of exacerbations per year.

18. Van Schooten FJ, Besaratinia A, De Flora S, D’Agostini F, Izzotti A, Camoirano A, Balm AJ,
Dallinga JW, Bast A, Haenen GR, et al. Effects of oral administration of N-acetyl-L-cysteine: a
multi-biomarker study in smokers. Cancer Epidemiol Biomarkers Prev. 2002; 11:167–175.
[PubMed: 11867504]

19. Gerrits CM, Herings RM, Leufkens HG, Lammers JW. N-acetylcysteine reduces the risk of re-
hospitalisation among patients with chronic obstructive pulmonary disease. Eur Respir J. 2003;
21:795–798. [PubMed: 12765423]

Rahman and MacNee Page 8

Curr Opin Pharmacol. Author manuscript; available in PMC 2013 September 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



20. Koechlin C, Couillard A, Cristol JP, Chanez P, Hayot M, Le Gallais D, Prefaut C. Does systemic
inflammation trigger local exercise-induced oxidative stress in COPD? Eur Respir J. 2004;
23:538–544. [PubMed: 15083751]

21. Braga PC, Allegra L, Rampoldi C, Ornaghi A, Beghi G. Long-lasting effects on rheology and
clearance of bronchial mucus after short-term administration of high doses of carbocysteine-lysine
to patients with chronic bronchitis. Respiration. 1990; 57:353–358. [PubMed: 2099568]

22. Hanaoka M, Droma Y, Chen Y, Agatsuma T, Kitaguchi Y, Voelkel NF, Kubo K. Carbocisteine
protects against emphysema induced by cigarette smoke extract in rats. Chest. 2011; 139:1101–
1108. [PubMed: 20847042]

23. Carpagnano GE, Resta O, Foschino-Barbaro MP, Spanevello A, Stefano A, Di Gioia G, Serviddio
G, Gramiccioni E. Exhaled Interleukine-6 and 8-isoprostane in chronic obstructive pulmonary
disease: effect of carbocysteine lysine salt monohydrate (SCMC-Lys). Eur J Pharmacol. 2004;
505:169–175. [PubMed: 15556150]

24. Zheng CH, Ahmed K, Rikitomi N, Martinez G, Nagatake T. The effects of S-
carboxymethylcysteine and N-acetylcysteine on the adherence of Moraxella catarrhalis to human
pharyngeal epithelial cells. Microbiol Immunol. 1999; 43:107–113. [PubMed: 10229264]

25. Cakan G, Turkoz M, Turan T, Ahmed K, Nagatake T. S-carboxymethylcysteine inhibits the
attachment of Streptococcus pneumoniae to human pharyngeal epithelial cells. Microb Pathog.
2003; 34:261–265. [PubMed: 12782478]

26. Tatsumi K, Fukuchi Y. Carbocisteine improves quality of life in patients with chronic obstructive
pulmonary disease. J Am Geriatr Soc. 2007; 55:1884–1886. [PubMed: 17979906]

27. Aylward M. An assessment of S-carboxymethylcysteine in the treatment of chronic bronchitis.
Curr Med Res Opin. 1974; 2:387–394. [PubMed: 4615884]

28. Edwards GF, Steel AE, Scott JK, Jordan JW. S-carboxymethylcysteine in the fluidification of
sputum and treatment of chronic airway obstruction. Chest. 1976; 70:506–513. [PubMed: 789027]

29. Miskoviti G, Szule P, Mescaros K. Double blind study of carbocysteine against placebo in chronic
bronchitis; Mucoregulation in respiratory tract disorders. Proc R Soc Med. 1982; 5:1–3.

30. Puchelle E, Girard F, Zahm JM. [Rheology of bronchial secretions and mucociliary transport
(author’s transl)]. Bull Eur Physiopathol Respir. 1976; 12:771–779. [PubMed: 1016804]

31. Allegra L, Cordaro CI, Grassi C. Prevention of acute exacerbations of chronic obstructive
bronchitis with carbocysteine lysine salt monohydrate: a multicenter, double-blind, placebo-
controlled trial. Respiration. 1996; 63:174–180. [PubMed: 8739489]

32. Grillage M, Barnard-Jones K. Long-term oral carbocisteine therapy in patients with chronic
bronchitis. A double blind trial with placebo control. Br J Clin Pract. 1985; 39:395–398. [PubMed:
3907681]

33. Yasuda H, Yamaya M, Sasaki T, Inoue D, Nakayama K, Tomita N, Yoshida M, Sasaki H.
Carbocisteine reduces frequency of common colds and exacerbations in patients with chronic
obstructive pulmonary disease. J Am Geriatr Soc. 2006; 54:378–380. [PubMed: 16460403]

34. Yasuda H, Yamaya M, Sasaki T, Inoue D, Nakayama K, Yamada M, Asada M, Yoshida M, Suzuki
T, Nishimura H, et al. Carbocisteine inhibits rhinovirus infection in human tracheal epithelial cells.
Eur Respir J. 2006; 28:51–58. [PubMed: 16510461]

35. Moretti M. Pharmacology and clinical efficacy of erdosteine in chronic obstructive pulmonary
disease. Expert Rev Respir Med. 2007; 1:307–316. [PubMed: 20477170]

36. Cazzola M, Floriani I, Page CP. The therapeutic efficacy of erdosteine in the treatment of chronic
obstructive bronchitis: a meta-analysis of individual patient data. Pulm Pharmacol Ther. 2010;
23:135–144. [PubMed: 19854285]

37. Dal Negro RW. Erdosteine: antitussive and anti-inflammatory effects. Lung. 2008; 186(Suppl
1):S70–73. [PubMed: 18185958]

38. Moretto N, Facchinetti F, Southworth T, Civelli M, Singh D, Patacchini R. alpha, beta-Unsaturated
aldehydes contained in cigarette smoke elicit IL-8 release in pulmonary cells through mitogen-
activated protein kinases. Am J Physiol Lung Cell Mol Physiol. 2009; 296:L839–848. [PubMed:
19286926]

39. Dal Negro RW, Visconti M, Tognella S, Micheletto C. Erdosteine affects eicosanoid production in
COPD. Int J Clin Pharmacol Ther. 2011; 49:41–45. [PubMed: 21176724]

Rahman and MacNee Page 9

Curr Opin Pharmacol. Author manuscript; available in PMC 2013 September 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



40. Rhee CK, Kang CM, You MB, Yoon HK, Kim YK, Kim KH, Moon HS, Park SH, Song JS. Effect
of fudosteine on mucin production. Eur Respir J. 2008; 32:1195–1202. [PubMed: 18579549]

41. Osoata GO, Hanazawa T, Brindicci C, Ito M, Barnes PJ, Kharitonov S, Ito K. Peroxynitrite
elevation in exhaled breath condensate of COPD and its inhibition by fudosteine. Chest. 2009;
135:1513–1520. [PubMed: 19188555]

42. Komatsu H, Yamaguchi S, Komorita N, Goto K, Takagi S, Ochi H, Okumoto T. Inhibition of
endotoxin- and antigen-induced airway inflammation by fudosteine, a mucoactive agent. Pulm
Pharmacol Ther. 2005; 18:121–127. [PubMed: 15649854]

43. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the
Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007; 47:89–116. [PubMed: 16968214]

44. Rangasamy T, Guo J, Mitzner WA, Roman J, Singh A, Fryer AD, Yamamoto M, Kensler TW,
Tuder RM, Georas SN, et al. Disruption of Nrf2 enhances susceptibility to severe airway
inflammation and asthma in mice. J Exp Med. 2005; 202:47, 59. [PubMed: 15998787]

45•. Sussan TE, Rangasamy T, Blake DJ, Malhotra D, El-Haddad H, Bedja D, Yates MS, Kombairaju
P, Yamamoto M, Liby KT, et al. Targeting Nrf2 with the triterpenoid CDDO-imidazolide
attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proc Natl Acad
Sci U S A. 2009; 106:250–255. [PubMed: 19104057] First experimental study showing utility of
synthetic Nrf2 activator in experimental emphysema in a mouse model.

46. Rangasamy T, Cho CY, Thimmulappa RK, Zhen L, Srisuma SS, Kensler TW, Yamamoto M,
Petrache I, Tuder RM, Biswal S. Genetic ablation of Nrf2 enhances susceptibility to cigarette
smoke-induced emphysema in mice. J Clin Invest. 2004; 114:1248–1259. [PubMed: 15520857]

47. Iizuka T, Ishii Y, Itoh K, Kiwamoto T, Kimura T, Matsuno Y, Morishima Y, Hegab AE, Homma
S, Nomura A, et al. Nrf2-deficient mice are highly susceptible to cigarette smoke-induced
emphysema. Genes Cells. 2005; 10:1113–1125. [PubMed: 16324149]

48. Goven D, Boutten A, Lecon-Malas V, Marchal-Somme J, Amara N, Crestani B, Fournier M,
Leseche G, Soler P, Boczkowski J, et al. Altered Nrf2/Keap1-Bach1 equilibrium in pulmonary
emphysema. Thorax. 2008; 63:916–924. [PubMed: 18559366]

49. Malhotra D, Thimmulappa R, Navas-Acien A, Sandford A, Elliott M, Singh A, Chen L, Zhuang X,
Hogg J, Pare P, et al. Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary
disease lungs due to loss of its positive regulator, DJ-1. Am J Respir Crit Care Med. 2008;
178:592–604. [PubMed: 18556627]

50. Suzuki M, Betsuyaku T, Ito Y, Nagai K, Nasuhara Y, Kaga K, Kondo S, Nishimura M. Down-
regulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with
chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2008; 39:673–682. [PubMed:
18566336]

51•. Kode A, Rajendrasozhan S, Caito S, Yang SR, Megson IL, Rahman I. Resveratrol induces
glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated
oxidative stress in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2008;
294:L478–488. [PubMed: 18162601] First experimental cell culture based evidence showing that
Nrf2 undergoes oxidative post-translational modifications by cigarette smoke extract exposure.

52••. Malhotra D, Thimmulappa RK, Mercado N, Ito K, Kombairaju P, Kumar S, Ma J, Feller-
Kopman D, Wise R, Barnes P, et al. Denitrosylation of HDAC2 by targeting Nrf2 restores
glucocorticosteroid sensitivity in macrophages from COPD patients. J Clin Invest. 2011;
121:4289–302. [PubMed: 22005302] First experimental ex-vivo study showing that a broccoli
containing compound sulforaphane (Nrf2 activator) restored dexamethasone sensitivity in
alveolar macrophages isolated from patients with COPD. The effect of sulforaphane was due to
restoration of intracellular glutathione levels.

53. Lee JH, Jung HS, Giang PM, Jin X, Lee S, Son PT, Lee D, Hong YS, Lee K, Lee JJ. Blockade of
nuclear factor-kappaB signaling pathway and anti-inflammatory activity of cardamomin, a
chalcone analog from Alpinia conchigera. J Pharmacol Exp Ther. 2006; 316:271–278. [PubMed:
16183703]

54. Liu YC, Hsieh CW, Wu CC, Wung BS. Chalcone inhibits the activation of NF-kappaB and STAT3
in endothelial cells via endogenous electrophile. Life Sci. 2007; 80:1420–1430. [PubMed:
17320913]

Rahman and MacNee Page 10

Curr Opin Pharmacol. Author manuscript; available in PMC 2013 September 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



55. Foresti R, Hoque M, Monti D, Green CJ, Motterlini R. Differential activation of heme oxygenase-1
by chalcones and rosolic acid in endothelial cells. J Pharmacol Exp Ther. 2005; 312:686–693.
[PubMed: 15537827]

56•. Kumar V, Kumar S, Hassan M, Wu H, Thimmulappa RK, Kumar A, Sharma SK, Parmar VS,
Biswal S, Malhotra SV. Novel chalcone derivatives as potent Nrf2 activators in mice and human
lung epithelial cells. J Med Chem. 2011; 54:4147–4159. [PubMed: 21539383] A synthetic
chemical approach in identifying a quantitative structure-activity relationship of various novel
Nrf2 activators, which act independent of ROS or redox changes in the cell.

57. Tajima S, Bando M, Ishii Y, Hosono T, Yamasawa H, Ohno S, Takada T, Suzuki E, Gejyo F,
Sugiyama Y. Effects of edaravone, a free-radical scavenger, on bleomycin-induced lung injury in
mice. Eur Respir J. 2008; 32:1337–1343. [PubMed: 18614556]

58. Kikuchi K, Uchikado H, Miyagi N, Morimoto Y, Ito T, Tancharoen S, Miura N, Miyata K,
Sakamoto R, Kikuchi C, et al. Beyond neurological disease: New targets for edaravone (Review).
Int J Mol Med. 2011; 28:899–906. [PubMed: 21922128]

59. Aldini G, Vistoli G, Regazzoni L, Benfatto MC, Bettinelli I, Carini M. Edaravone inhibits protein
carbonylation by a direct carbonyl-scavenging mechanism: focus on reactivity, selectivity, and
reaction mechanisms. Antioxid Redox Signal. 2010; 12:381–392. [PubMed: 19722825]

60. Aldini G, Dalle-Donne I, Facino RM, Milzani A, Carini M. Intervention strategies to inhibit
protein carbonylation by lipoxidation-derived reactive carbonyls. Med Res Rev. 2007; 27:817–
868. [PubMed: 17044003]

61. Ito K, Ozasa H, Horikawa S. Edaravone protects against lung injury induced by intestinal
ischemia/reperfusion in rat. Free Radic Biol Med. 2005; 38:369–374. [PubMed: 15629865]

62. Braughler JM, Pregenzer JF, Chase RL, Duncan LA, Jacobsen EJ, McCall JM. Novel 21-amino
steroids as potent inhibitors of iron-dependent lipid peroxidation. J Biol Chem. 1987; 262:10438–
10440. [PubMed: 3611075]

63. Miniati M, Cocci F, Monti S, Filippi E, Sarnelli R, Ferdeghini M, Gattai V, Pistolesi M. Lazaroid
U-74389F attenuates phorbol ester-induced lung injury in rabbits. Eur Respir J. 1996; 9:758–764.
[PubMed: 8726942]

64. Shenkar R, Abraham E. Effects of treatment with the 21-aminosteroid, U7438F, on pulmonary
cytokine expression following hemorrhage and resuscitation. Crit Care Med. 1995; 23:132–139.
[PubMed: 8001365]

65. Wang S, Lantz RC, Rider ED, Chen GJ, Breceda V, Hays AM, Robledo RF, Tollinger BJ, Dinesh
SV, Witten ML. A free radical scavenger (Lazaroid U75412E) attenuates tumor necrosis factor-
alpha generation in a rabbit model of smoke-induced lung injury. Respiration. 1997; 64:358–363.
[PubMed: 9311052]

66. Wang S, Lantz RC, Vermeulen MW, Chen GJ, Breceda V, Robledo RF, Hays AM, Young S,
Witten ML. Functional alterations of alveolar macrophages subjected to smoke exposure and
antioxidant lazaroids. Toxicol Ind Health. 1999; 15:464–469. [PubMed: 10487357]

67. Tanigaki T, Suzuki Y, Heimer D, Sussman HH, Ross WG, Raffin TA. Attenuation of acute lung
injury and oxygen radical production by the 21-aminosteroid, U-78518F. J Appl Physiol. 1993;
74:2155–2160. [PubMed: 8335543]

68. Tuder RM, Zhen L, Cho CY, Taraseviciene-Stewart L, Kasahara Y, Salvemini D, Voelkel NF,
Flores SC. Oxidative stress and apoptosis interact and cause emphysema due to vascular
endothelial growth factor receptor blockade. Am J Respir Cell Mol Biol. 2003; 29:88–97.
[PubMed: 12600822]

69. Muscoli C, Sacco I, Alecce W, Palma E, Nistico R, Costa N, Clementi F, Rotiroti D, Romeo F,
Salvemini D, et al. The protective effect of superoxide dismutase mimetic M40401 on balloon
injury-related neointima formation: role of the lectin-like oxidized low-density lipoprotein
receptor-1. J Pharmacol Exp Ther. 2004; 311:44–50. [PubMed: 15220383]

70. Chang LY, Crapo JD. Inhibition of airway inflammation and hyperreactivity by an antioxidant
mimetic. Free Radic Biol Med. 2002; 33:379–386. [PubMed: 12126760]

71. Smith KR, Uyeminami DL, Kodavanti UP, Crapo JD, Chang LY, Pinkerton KE. Inhibition of
tobacco smoke-induced lung inflammation by a catalytic antioxidant. Free Radic Biol Med. 2002;
33:1106–1114. [PubMed: 12374622]

Rahman and MacNee Page 11

Curr Opin Pharmacol. Author manuscript; available in PMC 2013 September 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



72. Sharpe MA, Ollosson R, Stewart VC, Clark JB. Oxidation of nitric oxide by oxomanganese-salen
complexes: a new mechanism for cellular protection by superoxide dismutase/catalase mimetics.
Biochem J. 2002; 366:97–107. [PubMed: 11994046]

73. Nishikawa M, Kakemizu N, Ito T, Kudo M, Kaneko T, Suzuki M, Udaka N, Ikeda H, Okubo T.
Superoxide mediates cigarette smoke-induced infiltration of neutrophils into the airways through
nuclear factor-kappaB activation and IL-8 mRNA expression in guinea pigs in vivo. Am J Respir
Cell Mol Biol. 1999; 20:189–198. [PubMed: 9922209]

74. Day BJ, Shawen S, Liochev SI, Crapo JD. A metalloporphyrin superoxide dismutase mimetic
protects against paraquat-induced endothelial cell injury, in vitro. J Pharmacol Exp Ther. 1995;
275:1227–1232. [PubMed: 8531085]

75. Day BJ, Fridovich I, Crapo JD. Manganic porphyrins possess catalase activity and protect
endothelial cells against hydrogen peroxide-mediated injury. Arch Biochem Biophys. 1997;
347:256–262. [PubMed: 9367533]

76. Ferrer-Sueta G, Vitturi D, Batinic-Haberle I, Fridovich I, Goldstein S, Czapski G, Radi R.
Reactions of manganese porphyrins with peroxynitrite and carbonate radical anion. J Biol Chem.
2003; 278:27432–27438. [PubMed: 12700236]

77. Tse HM, Milton MJ, Piganelli JD. Mechanistic analysis of the immunomodulatory effects of a
catalytic antioxidant on antigen-presenting cells: implication for their use in targeting oxidation-
reduction reactions in innate immunity. Free Radic Biol Med. 2004; 36:233–247. [PubMed:
14744635]

78. Vujaskovic Z, Batinic-Haberle I, Rabbani ZN, Feng QF, Kang SK, Spasojevic I, Samulski TV,
Fridovich I, Dewhirst MW, Anscher MS. A small molecular weight catalytic metalloporphyrin
antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-
induced injury. Free Radic Biol Med. 2002; 33:857–863. [PubMed: 12208373]

79. Kinnula VL, Crapo JD. Superoxide dismutases in the lung and human lung diseases. Am J Respir
Crit Care Med. 2003; 167:1600–1619. [PubMed: 12796054]

80••. Yao H, Arunachalam G, Hwang JW, Chung S, Sundar IK, Kinnula VL, Crapo JD, Rahman I.
Extracellular superoxide dismutase protects against pulmonary emphysema by attenuating
oxidative fragmentation of ECM. Proc Natl Acad Sci U S A. 2010; 107:15571–15576. [PubMed:
20713693]

81. Tollefson AK, Oberley-Deegan RE, Butterfield KT, Nicks ME, Weaver MR, Remigio LK,
Decsesznak J, Chu HW, Bratton DL, Riches DW, et al. Endogenous enzymes (NOX and ECSOD)
regulate smoke-induced oxidative stress. Free Radic Biol Med. 2010; 49:1937–1946. [PubMed:
20887783]

82. Jozsef L, Filep JG. Selenium-containing compounds attenuate peroxynitrite-mediated NF-kappaB
and AP-1 activation and interleukin-8 gene and protein expression in human leukocytes. Free
Radic Biol Med. 2003; 35:1018–1027. [PubMed: 14572605]

83. Haddad, el B.; McCluskie, K.; Birrell, MA.; Dabrowski, D.; Pecoraro, M.; Underwood, S.; Chen,
B.; De Sanctis, GT.; Webber, SE.; Foster, ML., et al. Differential effects of ebselen on neutrophil
recruitment, chemokine, and inflammatory mediator expression in a rat model of
lipopolysaccharide-induced pulmonary inflammation. J Immunol. 2002; 169:974–982. [PubMed:
12097404]

84. Zhang M, Nomura A, Uchida Y, Iijima H, Sakamoto T, Iishii Y, Morishima Y, Mochizuki M,
Masuyama K, Hirano K, et al. Ebselen suppresses late airway responses and airway inflammation
in guinea pigs. Free Radic Biol Med. 2002; 32:454–464. [PubMed: 11864785]

85. Chabrier PE, Auguet M, Spinnewyn B, Auvin S, Cornet S, Demerle-Pallardy C, Guilmard-Favre
C, Marin JG, Pignol B, Gillard-Roubert V, et al. BN 80933, a dual inhibitor of neuronal nitric
oxide synthase and lipid peroxidation: a promising neuroprotective strategy. Proc Natl Acad Sci U
S A. 1999; 96:10824–10829. [PubMed: 10485910]

86. Shi H, Timmins G, Monske M, Burdick A, Kalyanaraman B, Liu Y, Clement JL, Burchiel S, Liu
KJ. Evaluation of spin trapping agents and trapping conditions for detection of cell-generated
reactive oxygen species. Arch Biochem Biophys. 2005; 437:59–68. [PubMed: 15820217]

87. Bottle SE, Micallef AS. Synthesis and EPR spin trapping properties of a new isoindole-based
nitrone: 1,1,3-trimethylisoindole N-oxide (TMINO). Org Biomol Chem. 2003; 1:2581–2584.
[PubMed: 12956080]

Rahman and MacNee Page 12

Curr Opin Pharmacol. Author manuscript; available in PMC 2013 September 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



88. Becker DA, Ley JJ, Echegoyen L, Alvarado R. Stilbazulenyl nitrone (STAZN): a nitronyl-
substituted hydrocarbon with the potency of classical phenolic chain-breaking antioxidants. J Am
Chem Soc. 2002; 124:4678–4684. [PubMed: 11971716]

89. Valenca SS, Rueff-Barroso CR, Pimenta WA, Melo AC, Nesi RT, Silva MA, Porto LC. L-NAME
and L-arginine differentially ameliorate cigarette smoke-induced emphysema in mice. Pulm
Pharmacol Ther. 2011; 24:587–594. [PubMed: 21624489]

90•. Seimetz M, Parajuli N, Pichl A, Veit F, Kwapiszewska G, Weisel FC, Milger K, Egemnazarov B,
Turowska A, Fuchs B, et al. Inducible NOS Inhibition Reverses Tobacco-Smoke-Induced
Emphysema and Pulmonary Hypertension in Mice. Cell. 2011; 147:293–305. [PubMed:
22000010] Important study showing that inhibition of NO generation by iNOS inhibitors can
lead to reversal of experimental emphysema in a mouse model.

91. Brindicci C, Kharitonov SA, Ito M, Elliott MW, Hogg JC, Barnes PJ, Ito K. Nitric oxide synthase
isoenzyme expression and activity in peripheral lung tissue of patients with chronic obstructive
pulmonary disease. Am J Respir Crit Care Med. 2010; 181:21–30. [PubMed: 19797159]

92. Li Y, Liu W, Xing G, Tian C, Zhu Y, He F. Direct association of hepatopoietin with thioredoxin
constitutes a redox signal transduction in activation of AP-1/NF-kappaB. Cell Signal. 2005;
17:985–996. [PubMed: 15894171]

93. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K,
Ichijo H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK)
1. EMBO J. 1998; 17:2596–2606. [PubMed: 9564042]

94. Qin J, Clore GM, Kennedy WM, Huth JR, Gronenborn AM. Solution structure of human
thioredoxin in a mixed disulfide intermediate complex with its target peptide from the
transcription factor NF kappa B. Structure. 1995; 3:289–297. [PubMed: 7788295]

95. Souza DG, Vieira AT, Pinho V, Sousa LP, Andrade AA, Bonjardim CA, McMillan M, Kahn M,
Teixeira MM. NF-kappaB plays a major role during the systemic and local acute inflammatory
response following intestinal reperfusion injury. Br J Pharmacol. 2005; 145:246–254. [PubMed:
15765103]

96. Bachnoff N, Trus M, Atlas D. Alleviation of oxidative stress by potent and selective thioredoxin-
mimetic peptides. Free Radic Biol Med. 2011; 50:1355–1367. [PubMed: 21377525]

97•. Sato A, Hoshino Y, Hara T, Muro S, Nakamura H, Mishima M, Yodoi J. Thioredoxin-1
ameliorates cigarette smoke-induced lung inflammation and emphysema in mice. J Pharmacol
Exp Ther. 2008; 325:380–388. [PubMed: 18256171] First experimental study highlighting the
important of redox sensor molecule in experimental emphysema in mouse.

Rahman and MacNee Page 13

Curr Opin Pharmacol. Author manuscript; available in PMC 2013 September 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Highlights

Cigarette smoke causes oxidative stress in COPD.

Antioxidants can modulate intracellular redox system.

Thiols, enzyme mimetics, spin traps, and redox sensors are therapeutic agents.

Lipid peroxidation and protein carbonylation inhibitors block oxidative processes.

Antioxidants have pharmacological beneficial effects in management of COPD.
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Figure 1. Consequences of oxidative stress in COPD
The pathogenesis of COPD involves several oxidative stress-induced cellular and molecular
processes. Oxidative stress imposed by inhaled oxidants or produced from endogenous
sources can lead to depletion of antioxidants. An oxidant/antioxidant imbalance in favor of
oxidants leads to activation of various cellular processes which result in cellular and
molecular events involved in pathogenesis of COPD.
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Table 1
A list of thiol antioxidants and Nrf2 activators

Antioxidant Structure

N-acetyl-L-cysteine

Erdosteine

Fudosteine

Carbocysteine
(S-Carboxymethyl-L-cysteine)

Sulforaphane

Triterpenoids-
2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic
acid (CDDO)
Other analogs of CDDO
-1[2-Cyano-3,12-dioxooleana-1,9(11)-dien-28-
oyl]imidazole (CDDO-Im)
Dihydro-CDDO-Trifluoroethyl Amide
CDDO Methyl Amide
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