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The TERT variant rs2736100 is associated with colorectal
cancer risk

B Kinnersley1, G Migliorini1, P Broderick1, N Whiffin1, SE Dobbins1, G Casey2, J Hopper3, The Colon Cancer
Family Registry2, O Sieber4, L Lipton4, DJ Kerr5, MG Dunlop6, IPM Tomlinson7,8 and RS Houlston*,1 The CORGI
Consortium
1Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK; 2Department of Preventive Medicine, University of
Southern California, Los Angeles, CA, USA; 3Centre for Molecular, Environmental Genetic and Analytic Epidemiology, Melbourne School of Population
Health, The University of Melbourne, Parkville, Victoria, Australia; 4Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Western Hospital, PO
Box 2008, Parkville 3050, Victoria, Australia; 5Department of Oncology, Oxford University, Radcliffe Infirmary, Old Road Campus Research Building,
Headington, Oxford OX3 7DQ, UK; 6Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical
Research Council Human Genetics Unit, Edinburgh EH4 2XU, UK; 7Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK; 8Oxford NIHR
Comprehensive Biomedical Research Centre, Oxford, UK

BACKGROUND: Polymorphic variation at the 5p15.33 (TERT–CLPTM1L) locus is associated with the risk of many cancers but a
relationship with colorectal cancer (CRC) risk has yet to be defined.
METHODS: We used data from six genome-wide association studies (GWAS) of CRC, linkage disequilibrium mapping and imputation,
to examine the relationship between 73 single-nucleotide polymorphisms at 5p15.33 and CRC risk in detail.
RESULTS: rs2736100, which localises to intron 2 of TERT, provided the strongest evidence of an association with CRC
(P¼ 2.28� 10� 4). The association was also shown in an independent series of 10 047 CRC cases and 6918 controls (P¼ 0.02).
A meta-analysis of all seven studies (totalling 16 039 cases, 16 430 controls) provided increased evidence of association (P¼ 2.49
� 10� 5; per allele odds ratio¼ 1.07). The association of rs2736100 on CRC risk was shown to be independent of 15
low-penetrance variants previously identified.
CONCLUSION: The rs2736100 association demonstrates an influence of variation at 5p15.33 on CRC risk and further evidence that the
5p15.33 (TERT–CLPTM1L) locus has pleiotropic effects (reflecting generic or lineage-specific effects) on cancer risk.
British Journal of Cancer (2012) 107, 1001–1008. doi:10.1038/bjc.2012.329 www.bjcancer.com
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Many colorectal cancers (CRCs) develop in genetically susceptible
individuals most of whom are not carriers of germ-line mismatch
repair or APC mutations (Lichtenstein et al, 2000; Aaltonen et al,
2007). It is likely that much of the unexplained heritable risk is
attributable to a combination of multiple low-/moderate-pene-
trance genetic variants, which are associated with relatively small
effects on risk in the individual but contribute substantially to the
overall risk in the population (Fletcher and Houlston, 2010).

Genome-wide association studies (GWAS), using large sets of
cases and controls, have proven to be an effective strategy to
identify common single-nucleotide polymorphisms (SNPs) asso-
ciated with cancer risk without prior knowledge of position or
function (Fletcher and Houlston, 2010). This approach has
successfully identified novel loci for most of the common cancers
including CRC (Fletcher and Houlston, 2010). The majority of SNP
associations identified to date have been tumour specific, which is
consistent with the epidemiological studies of familial cancer risks
(Fletcher and Houlston, 2010). Evidence for pleiotropic effects,
reflecting generic or lineage-specific effects, is provided by

variation at 5p15.33 (TERT–CLPTM1L) that is associated with
the risk of many tumours including breast, testicular, bladder and
lung cancers (McKay et al, 2008; Wang et al, 2008; Rafnar et al,
2009; Shete et al, 2009; Van Dyke et al, 2009; Hsiung et al, 2010;
Turnbull et al, 2010; Beesley et al, 2011; Gago-Dominguez et al,
2011; Haiman et al, 2011; Kratz et al, 2011; Law et al, 2011; Peters
et al, 2012).

Although many cancer associations at 5p15.33 have been
identified with rs2736100, which localises to intron 2 of TERT
(McKay et al, 2008; Wang et al, 2008; Shete et al, 2009; Hsiung
et al, 2010; Turnbull et al, 2010; Gago-Dominguez et al, 2011), the
existence of other SNP associations within the region supports the
existence of multiple risk loci with different tumour specificities.
Recently, an association between the SNP rs2853668, which maps
centromeric to TERT but is only weakly correlated with rs2736100,
has been reported for CRC risk (Peters et al, 2012). Given the
ubiquitous necessity for tumours to avoid replicative senescence
through shortened telomere repeat length, a process that is often
mediated through expression of telomerase (Hanahan and
Weinberg, 2000), a variant at TERT associated with CRC would
be biologically plausible.

Using data from six GWAS of CRC, linkage disequilibrium (LD)
mapping and imputation, we have studied the relationship
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between variation at 5p15.33 and CRC risk in detail. To further
characterise the impact of 5p15.33 variation on CRC risk, we
genotyped an additional 10 047 CRC cases and 6918 controls.

MATERIALS AND METHODS

Ethics

Collection of blood samples and clinico-pathological information
from subjects was undertaken with informed consent and ethical
review board approval at all sites in accordance with the tenets of
the Declaration of Helsinki.

GWAS datasets

London 1 (LP1) comprised 940 cases with colorectal neoplasia
(47% male) ascertained through the Colorectal Tumour Gene
Identification (CoRGI) consortium. All had at least one first-degree
relative affected by CRC and one or more of the following
phenotypes: CRC at age 75 years or less; any colorectal adenoma
(CRAd) at age 45 or less; X3 colorectal adenomas at age 75 or less;
or a large (41 cm diameter) or aggressive (villous and/or severely
dysplastic) adenoma at age 75 years or less. The 965 controls (45%
males) were spouses or partners unaffected by cancer and without
a personal family history (to second-degree relative level) of
colorectal neoplasia. Known dominant polyposis syndromes,
HNPCC/Lynch syndrome or bi-allelic MUTYH mutation carriers
were excluded. All cases and controls had self-reported European
ancestry. Both cases and controls were genotyped using Illumina
HumanHap550 BeadChip Arrays (Teo et al, 2007).

Scotland1 (SP1) included 1012 CRC cases (51% male; mean age
at diagnosis 49.6 years, s.d.±6.1) and 1012 cancer-free population
controls (51% male; mean age 51.0 years; s.d.±5.9). Cases were
selected for early age at onset (age p55 years). Known dominant
polyposis syndromes, HNPCC/Lynch syndrome or bi-allelic
MUTYH mutation carriers were excluded. Control subjects were
sampled from the Scottish population NHS registers, matched by
age (±5 years), gender and area of residence within Scotland. Both
cases and controls were genotyped using Illumina HumanHap300
and HumanHap240S arrays (Gunderson et al, 2006; Abraham et al,
2008).

VQ58 (VQ) comprised 1800 CRC cases (1099 males, mean age of
diagnosis 62.5 years; s.d.±10.9) from the VICTOR and QUASAR2
(http://www.octo-oxford.org.uk/alltrials/infollowup/q2.html) trials.
Genotyping of cases was conducted using Illumina Hap300 and
Hap370 arrays (Gunderson et al, 2006; Howarth et al, 2009). The 2690
controls, typed on the Illumina Human 1.2M-Duo Custom_v1
Array BeadChips, were from the UK population-based 1958 birth
cohort, for which genotype data are publicly available from the
Wellcome Trust Case–Control Consortium 2 (Power and Elliott,
2006; The Wellcome Trust Case-Control Consortium, 2007).

The Colon Cancer Family Registry (CFR1) data set comprised
1290 familial CRC cases and 1055 controls CFR (Colon-CFR)
(http://epi.grants.cancer.gov/CFR/about_colon.html). The cases
were recently diagnosed CRC cases reported to population
complete cancer registries in the United States (Puget Sound,
WA, USA) recruited by the Seattle Familial Colorectal Cancer
Registry; in Canada (ON) recruited by the Ontario Familial Cancer
Registry; and in Australia (Melbourne, VIC) recruited by the
Australasian Colorectal Cancer Family Study. Controls were
population-based and for this analysis were restricted to those
without a family history of CRC (Newcomb et al, 2007). Cases and
controls were genotyped using Illumina HumanHap550 and 1M
and 1Mduo BeadChip Arrays.

CFR2 comprised an additional 796 cases ascertained through the
CFR (http://epi.grants.cancer.gov/CFR/about_colon.html). Cases
were genotyped using 1M Omni-Express BeadChip Arrays.

Illumina HumanHap550 BeadChip data on 2304 individuals from
the Cancer Genetic Markers of Susceptibility (CGEMS) studies
served as control genotypes (Hunter et al, 2007; Yeager et al, 2007).

The Australian (AUS) study (Tie et al, 2010) comprised 591
patients treated for CRC at the Royal Melbourne, Western and St
Francis Xavier Cabrini Hospitals in Melbourne from 1999 to 2009.
The 2353 controls were derived from Queensland or Melbourne:
for the former, the controls came from the Brisbane Twin Nevus
Study (Duffy et al, 2010); for the latter, individuals were
participants in the Genes in Myopia study (Baird et al, 2010).
There was no overlap between the CFR and Australian datasets.
Both cases and controls were genotyped using Illumina Human-
Hap550 BeadChip Arrays.

Each of these six GWAS datasets was subjected to extensive
quality control procedures. Specifically, the exclusion of samples
and SNPs with call rates o95%, non-European (CEU) ancestry,
relatedness (duplicates or related within or between each case–
control series) and sex discrepancy. Furthermore, there was no
evidence of systematic inflation of the test statistic in any study, as
assessed using the genomic overdispersion factor, lGC, which
ranged from 1.00 to 1.04.

Replication series

In total, 10 488 CRC cases, aged o80 years at diagnosis, were
ascertained between March 2003 and October 2011 through the
National Study of Colorectal Cancer Genetics (NSCCG) (Penegar
et al, 2007) (n¼ 9268); the Study of the Genetic Epidemiology of
Colorectal Cancer (n¼ 581) and the Royal Marsden Hospital
National Health Services Trust (RMHNHST) family history DNA
database (n¼ 639). Controls (n¼ 7137) were the spouses of cancer
cases and were ascertained through the NSCCG (n¼ 3047); the
Genetic Lung Cancer Predisposition Study (n¼ 1637); the Color-
ectal Adenoma Gene-Environment Interactions Study (n¼ 711);
the Study of the Genetic Epidemiology of Colorectal Cancer
(n¼ 344); and the RMHNHST family history DNA database
(n¼ 1398). None of the controls had a personal history of
malignancy at ascertainment. All subjects were British residents
with self-reported European ethnicity and there were no obvious
demographic differences between cases and controls.

Statistical and bioinformatic analysis

A P-value (two-sided)p0.05 was considered significant. We applied
a Bonferoni correction to adjust for multiple testing. Statistical
analyses were undertaken using SNPtest/META (The Wellcome
Trust Case-Control Consortium, 2007), and STATA v.10 (StataCorp
LP, College Station, TX, USA) software. The association between
each SNP and risk of CRC was assessed by the Cochran–Armitage
trend test. Odds ratios and associated 95% confidence intervals (CIs)
were calculated by unconditional logistic regression. Patterns of risk
for associated SNPs were investigated by logistic regression, coding the
SNP genotypes according to additive, dominant and recessive models.
We then compared models by calculating the Akaike information
criterion and Akaike weights for each mode of inheritance.

Interaction between SNP and genotypes was evaluated by
likelihood ratio tests comparing an additive model to a model
with an interaction term. Prediction of the non-genotyped SNPs
within the 119.3-kb region of 5p15.33 (TERT–CLPTM1L)
(1 243 475–1 362 793 bps, NCBI build b37) was carried out using
IMPUTEv2 based on the June 2011 release of 1000 Genomes
Project data (Howie et al, 2009, 2011; The 1000 Genomes Project
Consortium, 2010). Association testing of genotyped and imputed
imputed data were analysed using SNPTEST v2 to account for
uncertainties in SNP prediction. Imputed genotypes were only
called if they had a probability 40.90. Association meta-analyses
only included markers with proper_info scores 40.9, imputed call
rates/SNP40.9 and Hardy–Weinberg40.01. To condition by SNP,
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the SNP was added as a covariate. Meta-analysis was performed
using a fixed-effects model, estimating Cochran’s Q statistic to test
for heterogeneity and the I2 statistic to quantify the proportion of
the total variation between studies.

Analysis of LD was performed using the Broad Institute SNP
Annotation and Proxy (SNAP) Search utilising 1000 Genomes
Project data. Transcription factor-binding prediction was per-
formed with TFSearch. Cross-species evolutionary conservation
was assessed with the deCode ECR browser. The UCSC genome
browser was used to examine H3K4Me1, H3K4Me3 and DNase-I
hypersensitivity in publicly available cell line data.

Association between rs2736100 and tumour site (colon-ICD
International Classification of Diseases 9th revision (ICD9)-153;
rectal cancer: ICD9-154), Dukes stage (AþB; CþD), grade
(poorly; moderate/well differentiated), sex, age at diagnosis
(p55, 455), family history of CRC in a first-degree relative and
MSI status was evaluated by case-only analysis.

Molecular analysis

DNA was extracted from EDTA venous blood samples using
conventional methodologies and PicoGreen quantified (Invitrogen
Corporation, Carlsbad, CA, USA). We selected 15 SNPs that
have been reported to be associated with CRC from 14
chromosomal regions: rs6691170 (1q41), rs10936599 (3q26.2),
rs16892766 (8q23.3), rs6983267 (8q24.21), rs10795668 (10p14),
rs3802842 (11q23.1), rs11169552 (12q13.13), rs4444235 (14q22.2),
rs4779584 (15q13.33), rs11632715 (15q13.3) rs9929218 (16q22.1),
rs4939827 (18q21.1), rs10411210 (19q13.1), rs961253 (20p12.3) and
rs4925386 (20q13.33) (Tomlinson et al, 2007; Houlston et al, 2008;
Jaeger et al, 2008; Tenesa et al, 2008; Tomlinson et al, 2008;
Houlston et al, 2010; Tomlinson et al, 2011). Genotyping of these
SNPs and rs2736100 was conducted using KASPar competitive
allele-specific PCR chemistry (KBiosciences Ltd, Hoddesdon,
UK; primer sequences and conditions available on request).
To monitor quality control, duplicate samples were included in
assays and a subset of samples sequenced. Concordance between
duplicate samples was (499%).

Tumour MSI status in CRCs was determined as described
previously (Penegar et al, 2007) using the mononucleotide
microsatellite loci BAT25 and BAT26, which are highly sensitive
MSI markers. Briefly, 10-mm sections were cut from formalin-
fixed paraffin-embedded CRC tumours, lightly stained with
toluidine blue and regions containing at least 60% tumour
microdissected. Tumour DNA was extracted using the QIAamp
DNA Mini kit (Qiagen, Crawley, UK) according to the manufac-
turer’s instructions and genotyped for the BAT25 and BAT26 loci.
Samples showing novel alleles, when compared with normal DNA,
at either or both markers were assigned as MSI-H (corresponding
to MSI-high) (Boland et al, 1998).

RESULTS

Descriptive data

Table 1 provides summary information on the clinico-pathological
characteristics and demographic information on each of the six
GWAS datasets and the replication case–control series.

LD structure of the 5p15.33 region

The six GWA studies of CRC provided genotype data for 12–45
SNPs (depending on study) mapping to the 119.3-kb region
of 5p15.33 in a total of 6007 cases and 9520 controls (Figure 1).
To further investigate the relationship between genetic variation at
this region and CRC risk, using 1000 genomes data, we imputed
the genotypes of 22 SNPs not directly genotyped in one or more
studies and 45 SNPs not genotyped in any study. Including 6 SNPs
directly genotyped in all studies, a total of 73 SNPs were imputed
(Figure 1). In a combined analysis of these data, the strongest
association was shown by the directly typed SNP, rs2736100
(P¼ 2.28� 10� 4; Figure 1). The per allele OR of CRC associated

Table 1 Clinico-pathological details of each of the case–control series analysed

rs2736100 genotype

Cases Controls

Study Cases Controls GG GT TT RAF GG GT TT RAF

AUS 376 (379) 1702 (1703) 79 190 107 0.54 445 860 397 0.49
CFR1 1175 (1175) 999 (999) 271 576 328 0.52 261 504 234 0.49
CFR2 796 (796) 2232 (2234) 181 415 200 0.51 584 1102 546 0.49
LP1 890 (890) 900 (900) 207 442 241 0.52 237 427 236 0.50
SP1 962 (973) 998 (998) 218 498 246 0.52 261 469 268 0.50
VQ 1793 (1794) 2681 (2686) 450 897 446 0.50 743 1274 664 0.49
Replication 10 047 (10 488) 6918 (7137) 2337 5087 2623 0.51 1727 3446 1745 0.50

Abbreviations: AUS¼Australian; CFR¼Colon Cancer Family Registry; LP1¼ London 1; RAF¼ risk allele frequency (rs2736100-T); VQ¼VQ58. Numbers in brackets indicate
post-QC sample individuals, whereas numbers not in brackets indicate post-QC sample individuals with rs2736100 genotypes.
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P-values (y-axis) of the SNPs are shown according to their chromosomal
positions (x-axis). rs2736100 is represented by a large triangle. The
grayscale intensity of each symbol reflects the extent of LD with rs2736100:
white (r2¼ 0) through to dark grey (r2¼ 1.0). Genetic recombination rates
(cM/Mb), estimated using HapMap CEU samples, are shown with a light
grey line. Physical positions are based on NCBI build 37 of the human
genome. Also shown are the relative positions of genes and transcripts
mapping to each region of association. Genes have been redrawn to show
the relative positions; therefore, maps are not to physical scale. For SNPs
where r2 data were unavailable, these values were set to 0. The colour
reproduction of this figure is available at British Journal of Cancer online.
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with rs2736100-T genotype was 1.10 (95% CI:1.05–1.15). The
association between rs2853668, a SNP previously reported to be
associated with CRC(Peters et al, 2012), and CRC risk was non-
significant (P¼ 0.06). To explore the possibility of secondary
associations with CRC, we conducted pairwise conditional analyses
of the eight SNPs showing the best evidence for an association with
risk. rs2736100 genotype was shown to be sufficient to capture the
5p15.33 association with CRC risk (Table 2).

Replication of the rs2736100 association

To provide further independent replication of the rs2736100
association with CRC risk, we genotyped an additional 10 488 cases
and 7137 controls. Genotypes were obtained for 96% of cases
(n¼ 10 047) and 97% of controls (n¼ 6918) (Table 1). There was
no evidence of population stratification in controls as the genotype
distribution satisfied Hardy–Weinberg equilibrium (P¼ 0.76). As
with the GWAS data there was a significant over-representation of
the rs2736100-T genotype in CRC cases (P¼ 0.019; Supplementary
Table 1). Respective ORs of CRC associated with heterozygosity
and homozygosity for rs2736100-T were 1.09 and 1.11, respec-
tively, (Supplementary Table 1). The impact of rs2736100 genotype
on CRC was thus comparable to that shown in the combined
analysis of the six GWAS datasets. Although the pattern of risk for
CRC was most parsimonious with a dominant model, a multi-
plicative model was equally favoured (P¼ 0.27). To enhance our
ability to demonstrate a relationship between 5p15.33 variation
and CRC risk, we conducted a combined analysis of all datasets

(Figure 2). In this meta-analysis, the per allele OR was 1.07
(95% CI: 1.04–1.11; P¼ 2.49� 10� 5; Bonferroni-adjusted P-value
was 1.82� 10� 3) and there was no evidence for between-study
heterogeneity (Phet¼ 0.7, I2¼ 0%).

Relationship between rs2736100 genotype and phenotype

To explore the relationship between rs2736100 genotype and CRC
phenotype, we performed a case-only analysis using the replication
series. This analysis provided no statistically significant evidence
that the CRC association was modified by age, sex, or family
history of CRC (Supplementary Table 1). For 3200 of the cases with
known MSI status, rs2736100 genotypes were successfully gener-
ated on 2981 (93%), allowing us to calculate CRC risks stratified by
MSI status. This analysis did not provide evidence for a relation-
ship between SNP genotype and MSI status (Supplementary
Table 1).

Interaction between rs2736100 and other common CRC
risk variants

Using logistic regression analysis, we tested for an interaction
between rs2736100 and each of 15 SNPs shown previously to be
associated with CRC, namely, rs6691170, rs10936599, rs16892766,
rs6983267, rs10795668, rs3802842, rs11169552, rs4444235,
rs4779584, rs9929218, rs4939827, rs10411210, rs961253,
rs4925386 and rs11632715. No evidence of statistical interaction
between any of the 15 SNPs and rs2736100 was shown
(Supplementary Table 2).

Table 2 Conditional analysis on the SNPs most significantly associated with CRC in TERT–CLPTM1L after imputation

SNP
Main effect

P-value
r2 With

rs2736100
Conditioned on

rs2736100 P-value
r2 With

rs2853668
Conditioned on

rs2853668 P-value

rs2736100 0.0002 1 (ref) 1 (ref) 0.15 0.001
rs2736122 0.001 0.20 0.01 0.00 0.003
rs4583925 0.002 0.03 0.01 0.00 0.004
rs4507531 0.003 0.03 0.02 0.00 0.004
rs79323805 0.003 0.03 0.02 0.00 0.005
rs4075202 0.005 0.03 0.03 0.00 0.008
rs35595862 0.03 0.00 0.01 0.05 0.07
rs2853668 0.06 0.15 0.50 1 (ref) 1 (ref)

Abbreviations: CRC¼ colorectal cancer; ref¼ reference; SNP¼ single-nucleotide polymorphism. The eight most significant SNPs for association using the Mantel–Haenszel
method for combining study data are shown, with P-values for an initial unconditioned additive test, and then after conditioning on rs2736100 and rs2853668, respectively.
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The diamond (and broken line) denotes the overall summary estimate, with CIs given by its width. The unbroken vertical line is at the null value (OR¼ 1.0).
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DISCUSSION

Here we have demonstrated a statistically significant association
between rs2736100 genotype and risk of CRC. We have also
been able to show that variation at 5p15.33 influences CRC
risk independently of other previously identified common risk
variants. This is consistent with a model in which rs2736100 is
acting additively with other common risk variants in mediating
CRC susceptibility. As the risk allele of rs2736100 is common, the
variant is likely to underscore B7% of all CRC in European
populations.

Intriguingly rs2736100-T is associated with elevated risk of
testicular cancer (Turnbull et al, 2010), but reduced risk of glioma
(Shete et al, 2009), lung adenocarcinoma (McKay et al, 2008;
Wang et al, 2008) and bladder cancer (Gago-Dominguez et al,
2011). These differential effects of genotype are likely to be
reflective of tumour- and lineage-specific effect.

Although rs2736100 localises to intron 2 of TERT, this does not
exclude the possibility of long-range effects as the functional basis
for the 5p15.33 cancer association. However, although the 5p15.33
locus includes the TERT and CLPTM1L genes, these essentially
map to two distinct regions of LD, making it likely rs2736100
impacts either directly or indirectly on TERT.

A recent study reported an association between the TERT SNP
rs2853668 and CRC risk (Peters et al, 2012). In our study,
rs2736100 provided superior evidence for an association with CRC
than rs2853668. As rs2736100 and rs2853668 are correlated, albeit
weakly (r2¼ 0.15, D0 ¼ 0.69), it is likely that the association
reported by Peters et al, (2012) reflects the impact of rs2736100
genotype, or a hitherto unidentified correlated variant on
CRC risk.

Functional variants in TERT have been shown to affect
telomerase expression through modulating promoter activity
(Beesley et al, 2011), and such a mechanism offers a possible
explanation for how a putative functional variant at TERT affects
CRC risk (Aisner, 2002). Although sequence conservation in
non-coding regions has been shown to be a good predictor of cis-
regulatory sequences (Gomez-Skarmeta et al, 2006), there is little
evidence for high conservation directly at rs2736100 (Figure 3).
ENCODE project data does not show evidence for DNAse
hypersensitivity sites (indicating open chromatin), or histone
H3KMe1/H3KMe3 methylation (often near regulatory elements) at
rs2736100. Although these data do not support rs2736100 being
directly functional, in an analysis of putative binding sites at
rs2736100 using TFSearch, SRY and Hfh-2 sites are only predicted
for rs2736100-T and not rs2736100-G. SRY (sex determining

region Y) is a male-expressed gene involved in sex determination
(Wallis et al, 2008). Although speculative, rs2736100-T-mediated
SRY recruitment to TERT might lead to increased expression of
telomerase in germ cells, thereby providing an explanation for the
increased risk of testicular cancer associated with rs2736100-T
(Turnbull et al, 2010). It is unknown whether Hfh-2 (also known as
FOXD3) regulates telomerase expression, however, this forkhead
transcription factor has a role in early cell development, thus
suggesting another biological basis for the 5p15.33 association
(Guo et al, 2002). Such speculations are predicated on the
assumption that rs2736100 underscores the 5p15.33 association.
Although our imputation provided no evidence for a stronger
signal at 5p15.33 than that afforded by rs2736100, it is possible the
association is mediated through one or more rare disease-causing
variants, which are not adequately catalogued by the 1000
Genomes project data. High-depth coverage sequencing of a large
series of CRC cases for 5p15.33 variation would allow this
possibility to be explored.

In conclusion, our data demonstrate that polymorphic
variation at 5p15.33 is a determinant of CRC risk. It has recently
been shown that polymorphisms in TERC (telomerase RNA
component) are associated with CRC risk and increased
telomere length (Codd et al, 2010; Houlston et al, 2010; Jones
et al, 2012); collectively these data extend the role of genetic
variation in telomere elongation mechanisms in defining cancer
risk per se.
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